
Pybinding User Guide
Release 0.9.4

Dean Moldovan

Jul 13, 2017

Contents

1 Background 3

2 Workflow 5

3 Citing 7

4 BSD License 9

5 Benchmarks 11
5.1 System construction . 11

6 Changelog 13
6.1 v0.9.4 | 2017-07-13 . 13
6.2 v0.9.3 | 2017-05-29 . 13
6.3 v0.9.2 | 2017-05-26 . 13
6.4 v0.9.1 | 2017-04-28 . 14
6.5 v0.9.0 | 2017-04-14 . 14
6.6 v0.8.2 | 2017-01-26 . 15
6.7 v0.8.1 | 2016-11-11 . 16
6.8 v0.8.0 | 2016-07-01 . 16
6.9 v0.7.2 | 2016-03-14 . 17
6.10 v0.7.1 | 2016-02-08 . 17
6.11 v0.7.0 | 2016-02-01 . 17

7 Installation 19
7.1 Quick Install . 19
7.2 Advanced Install . 21

8 Tutorial 25
8.1 Imports . 25
8.2 Lattice . 25
8.3 Band structure . 31
8.4 Finite size . 37
8.5 Shape and symmetry . 44
8.6 Fields and effects . 53
8.7 Defects and strain . 64
8.8 Eigenvalue solvers . 71
8.9 Kernel polynomial method . 75
8.10 Scattering model . 83

9 Additional Topics 91
9.1 Lattice specification . 91

i

9.2 Composite shapes . 96
9.3 Multi-orbital models . 101
9.4 Kwant compatibility . 104

10 Plotting Guide 109
10.1 Model structure . 109
10.2 Structure-mapped data . 115

11 Random Examples 121
11.1 Lattice specification and bands . 121
11.2 Finite size . 133
11.3 Nanoribbons . 136

12 Material Repository 139
12.1 Graphene . 139
12.2 Phosphorene . 144
12.3 Group 6 TMDs . 145

13 API Reference 149
13.1 Lattice . 149
13.2 Model . 154
13.3 Shapes . 156
13.4 Symmetry . 160
13.5 Modifiers . 160
13.6 Compute . 164
13.7 Results . 176
13.8 Components . 185
13.9 Miscellaneous . 191

14 Experimental 195
14.1 CUDA-based KPM . 195
14.2 FEAST eigensolver . 195
14.3 Hopping generator . 196

ii

Pybinding User Guide, Release 0.9.4

Pybinding is a scientific Python package for numerical tight-binding calculations in solid state physics. If you’re
just browsing, the Tutorial section is a good place to start. It gives a good overview of the most important features
with lots of code examples.

As a very quick example, the following code creates a triangular quantum dot of bilayer graphene and then applies
a custom asymmetric strain function:

import pybinding as pb
from pybinding.repository import graphene

def asymmetric_strain(c):
@pb.site_position_modifier
def displacement(x, y, z):

ux = -c/2 * x**2 + c/3 * x + 0.1
uy = -c*2 * x**2 + c/4 * x
return x + ux, y + uy, z

return displacement

model = pb.Model(
graphene.bilayer(),
pb.regular_polygon(num_sides=3, radius=1.1),
asymmetric_strain(c=0.42)

)
model.plot()

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Within the pybinding framework, tight-binding models are assembled from logical parts which can be mixed
and matched in various ways. The package comes with a few predefined components: crystal lattices, shapes,
symmetries, defects, fields and more (like the graphene.bilayer() lattice and the regular_polygon()
shape shown above). Users can also define new components (just like the asymmetric strain above). This modular
approach enables the construction of arbitrary tight-binding models with clear, easy-to-use code. Various solvers,
computation routines and visualization tools are also part of the package. See the Tutorial for a walkthrough of
the features.

The source code repository is located on Github where you can also post any questions, comments or issues that
you might have.

Contents 1

https://github.com/dean0x7d/pybinding

Pybinding User Guide, Release 0.9.4

Pybinding is a Python package for numerical tight-binding calculations in solid state physics. The main features
include:

• Declarative model construction - The user just needs to describe what the model should be, but not how
to build it. Pybinding will take care of the numerical details of building the Hamiltonian matrix so users can
concentrate on the physics, i.e. the quantum properties of the model.

• Fast compute - Pybinding’s implementation of the kernel polynomial method allows for very fast calcula-
tion of various physical properties of tight-binding systems. Exact diagonalization is also available through
the use of scipy’s eigenvalue solvers. The framework is very flexible and allows the addition of user-defined
computation routines.

• Result analysis and visualization - The package contains utility functions for post-processing the raw
result data. The included plotting functions are tailored for tight-binding problems to help visualize the
model structure and to make sense of the results.

The main interface is written in Python with the aim to be as user-friendly and flexible as possible. Under the
hood, C++11 is used to accelerate demanding tasks to deliver high performance with low memory usage.

2 Contents

CHAPTER 1

Background

The tight-binding model is an approximate approach of calculating the electronic band structure of solids using a
basis of localized atomic orbitals. This model is applicable to a wide variety of systems and phenomena in quantum
physics. The approach does not require computing from first principals, but instead simply uses parameterized
matrix elements. In contrast to ab initio calculations, the tight-binding model can scale to large system sizes on
the order of millions of atoms.

Python is a programming language which is easy to learn and a joy to use. It has deep roots in the scientific
community as evidenced by the rich scientific Python library collection: SciPy. As such, Python is the ideal choice
as the main interface for pybinding. In the core of the package, C++11 is used to accelerate model construction
and the most demanding calculations. This is done silently in the background.

3

http://www.scipy.org/

Pybinding User Guide, Release 0.9.4

4 Chapter 1. Background

CHAPTER 2

Workflow

The general workflow starts with model definition. Three main parts are required to describe a tight-binding
model:

• The crystal lattice - This step includes the specification of the primitive lattice vectors and the configura-
tion of the unit cell (atoms, orbitals and spins). This can be user-defined, but the package also contains a
repository of the pre-made specifications for several materials.

• System geometry - The model system can be infinite through the use of translational symmetry or it can
be finite by specifying a shape. The two approaches can also be composed to create periodic systems with
intricate structural patterns. The structure can be controlled up to fine details, e.g. to form specific edge
types as well as various defects.

• Fields - Functions can be applied to the onsite and hopping energies of the model system to simulate external
fields or various effects. These functions are be defined independently of any lattice or specific structure
which makes them easily reusable and mutually composable.

Once the model description is complete, pybinding will build the tight-binding Hamiltonian matrix. The next step
is to apply computations to the matrix to obtain the values of the desired quantum properties. To that end, there
are the following possibilities:

• Kernel polynomial method - Pybinding implements a fast Chebyshev polynomial expansion routine which
can be used to calculate various physical properties. For example, it’s possible to quickly compute the local
density of states or the transport characteristics of the system.

• Exact diagonalization - Eigensolvers may be used to calculate the eigenvalues and eigenvectors of the
model system. Common dense and sparse matrix eigensolvers are available via SciPy.

• User-defined compute - Pybinding constructs the Hamiltonian in the standard sparse matrix CSR format
which can be plugged into custom compute routines.

After the main computation is complete, various utility functions are available for post-processing the raw result
data. The included plotting functions are tailored for tight-binding problems to help visualize the model structure
and to make sense of the results.

5

Pybinding User Guide, Release 0.9.4

6 Chapter 2. Workflow

CHAPTER 3

Citing

Pybinding is free to use under the simple conditions of the BSD open source license (included below). If you wish
to use results produced with this package in a scientific publication, please just mention the package name in the
text and cite the Zenodo DOI of this project:

You’ll find a “Cite as” section in the bottom right of the Zenodo page. You can select a citation style from the
dropdown menu or export the data in BibTeX and similar formats.

7

Pybinding User Guide, Release 0.9.4

8 Chapter 3. Citing

CHAPTER 4

BSD License

Copyright (c) 2015 - 2017, Dean Moldovan

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

9

Pybinding User Guide, Release 0.9.4

10 Chapter 4. BSD License

CHAPTER 5

Benchmarks

One of the main features of pybinding is an easy-to-use and fast model builder: it constructs the tight-binding
Hamiltonian matrix. This can be a demanding task for large or complicated systems (with many parameters).
Great care was taken to make this process fast.

We compare the performance of pybinding with the Kwant package. Both code packages are based on the numer-
ical tight-binding method and can build identical Hamiltonian matrices. For calculations involving these matrices,
the packages specialize in different ways: Kwant is intended for transport calculations with scattering systems
while pybinding targets large finite-sized and periodic systems in 1 to 3 dimensions. Pybinding can also be used
to construct scattering systems, however it does not have a builtin solver for transport problems. This is where
the Kwant compatibility layer comes in: it’s possible to build a system in pybinding and use Kwant’s solvers for
transport calculations. This combination takes advantage of the much faster model builder – see the comparison
below.

System construction

The code used to obtain these results is available here: Source code. You can download it and try it on your
own computer. Usage instructions are located at the top of the script file.

The benchmark constructs a circular graphene flake with a pn-junction and a constant magnetic field. The system
build time is measured from the start of the definition to the point where the Hamiltonian matrix is fully constructed
(a sparse matrix is used in both cases).

Pybinding builds the Hamiltonian much faster than Kwant: by two orders of magnitude. The main reason for this
is in the way the system shape and fields are implemented. Both Kwant and pybinding take user-defined functions
as parameters for model construction. Kwant calls these functions individually for each atom and hopping which is
quite slow. Pybinding stores all atoms and hoppings in contiguous arrays and then calls the user-defined functions
just once for the entire dataset. This takes advantage of vectorization and drastically improves performance.
Similarly, the lower memory usage is achieved by using arrays and CSR matrices rather than linked lists and trees.

Please note that at the time of writing pybinding v0.8 does lack certain system construction features compared to
Kwant. Specifically, it is currently not possible to build heterostructures in pybinding, but this will be resolved in
the near future. New features will be added while maintaining good performance.

At first glance it may seem like system build time is not really relevant because it is only done once and then
multiple calculations can be applied to the constructed system. However, every time a parameter is changed
(like some field strength) the Hamiltonian matrix will need to be rebuilt. Even though Kwant does take this
into account and only does a partial rebuild, pybinding is still much faster and this is very apparent in transport

11

http://kwant-project.org/

Pybinding User Guide, Release 0.9.4

Fig. 5.1: The results were measured for pybinding v0.8.0 and kwant v1.2.2 using: Intel Core i7-4960HQ CPU, 16
GiB RAM, Python 3.5, macOS 10.11. The RAM usage was measured using memory_profiler v0.41.

calculations which sweep over some model parameter. For more information and a direct comparison, see the
Kwant compatibility section.

12 Chapter 5. Benchmarks

CHAPTER 6

Changelog

v0.9.4 | 2017-07-13

• Fixed issues with multi-orbital models: matrix onsite terms were not set correctly if all the elements on
the main diagonal were zero (#5), hopping terms were being applied asymmetrically for large multi-orbital
systems (#6). Thanks to @oroszl (László Oroszlány) for reporting the issues.

• Fixed KPM Hamiltonian scaling for models with all zeros on the main diagonal but asymmetric spectrum
bounds (non-zero KPM scaling factor b).

• Fixed compilation on certain Linux distributions (#4). Thanks to @nu11us (Will Eggleston) for reporting
the issue.

• Fixed compilation with Visual Studio 2017.

• Improved support for plotting slices of multi-layer systems. See “Plotting Guide” > “Model structure” >
“Slicing layers” in the documentation.

v0.9.3 | 2017-05-29

• Added support for Kwant v1.3.x and improved Model.tokwant() exporting of multi-orbital models.

• Fixed errors when compiling with GCC 6.

v0.9.2 | 2017-05-26

New KPM features and improvements

• Added a method for calculating spatial LDOS using KPM. See the “Kernel Polynomial Method” tutorial
page and the KPM.calc_spatial_ldos API reference.

• Improved single-threaded performance of KPM.calc_dos by ~2x by switching to a more efficient vector-
ization method. (Multiple random starter vectors are now computed simultaneously and accelerated using
SIMD intrinsics.)

13

https://github.com/dean0x7d/pybinding/issues/5
https://github.com/dean0x7d/pybinding/issues/6
https://github.com/oroszl
https://github.com/dean0x7d/pybinding/issues/4
https://github.com/nu11us

Pybinding User Guide, Release 0.9.4

• Various KPM methods now take advantage of multiple threads. This improves performance depending on
the number of cores on the target machine. (However, for large systems performance is limited by RAM
bandwidth, not necessarily core count.)

• LDOS calculations for multiple orbitals also take advantage of the same vectorization and multi-threading
improvements. Single-orbital LDOS does not benefit from this but it has received its own modest perfor-
mance tweaks.

• Long running KPM calculation now have a progress indicator and estimated completion time.

General improvements and bug fixes

• StructureMap can now be sliced using a shape. E.g. s = pb.rectangle(5, 5); smap2 =
smap[s] which returns a smaller structure map cut down to the given shape.

• Plotting the structure of large or periodic systems is slightly faster now.

• Added 2D periodic supercells to the “Shape and symmetry” section of the tutorial.

• Added a few more examples to the “Plotting guide” (view rotation, separating sites and hoppings and com-
posing multiple plots).

• Fixed broken documentation links when using the online search function.

• Fixed slow Hamiltonian build when hopping generators are used.

v0.9.1 | 2017-04-28

• Fixed an issue with multi-orbital models where onsite/hopping modifiers would return unexpected results if
a new energy array was returned (rather than being modified in place).

• Fixed Solver.calc_spatial_ldos and Solver.calc_probability returning single-orbital
results for multi-orbital models.

• Fixed slicing of Structure objects and made access to the data property of SpatialMap and
StructureMap mutable again.

v0.9.0 | 2017-04-14

Updated requirements

• This version includes extensive internal improvements and raises the minimum requirements for installation.
Starting with this release, only Python >= 3.5 is supported. Newer versions of the scientific Python packages
are also required: numpy >= 1.12, scipy >= 0.19 and matplotlib >= 2.0.

• On Linux, the minimum compiler requirements have also been increased to get access to C++14 for the core
of the library. To compile from source, you’ll need GCC >= 5.0 or clang >= 3.5.

Multi-orbital models

• Improved support for models with multiple orbitals, spins and any additional degrees of freedom. These
can now be specified simply by inputing a matrix as the onsite or hopping term (instead of a scalar value).
For more details, see the “Multi-orbital models” section of the documentation.

• Lifted all limits on the number of sublattices and hoppings which can be defined in a Lattice object. The
previous version was limited to a maximum of 128 onsite and hopping terms per unit cell (but those could
be repeated an unlimited number of times to form a complete system). All restrictions are now removed so

14 Chapter 6. Changelog

Pybinding User Guide, Release 0.9.4

that the unit cell size is only limited by available memory. In addition, the memory usage of the internal
system format has been reduced.

• Added a 3-band model of group 6 transition metal dichalcogenides to the Material Repository. The available
TMDs include: MoS2, WS2, MoSe2, WSe2, MoTe2, WTe2. These are all monolayers.

Composite shapes

• Complicated system geometries can now be created easily by composing multiple simple shapes. This is
done using set operations, e.g. unions, intersections, etc. A complete guide for this functionality is available
in the “Composite shapes” section of the documentation.

Kernel polynomial method

• The KPM implementation has been revised and significantly expanded. A guide and several examples are
available in the “Kernel polynomial method” section of the documentation (part 9 of the Tutorial). For a
complete overview of the available methods and kernels, see the chebyshev section of the API reference.

• New builtin computation methods include the stochastically-evaluated density of states (DOS) and electrical
conductivity (using the Kubo-Bastin approach).

• The new low-level interface produces KPM expansion moments which allows users to create their own
KPM-based computation routines.

• The performance of various KPM computations has been significantly improved for CPUs with AVX sup-
port (~1.5x speedup on average, but also up to 2x in some cases with complex numbers).

Miscellaneous

• Added the pb.save() and pb.load() convenience functions for getting result objects into/out of files.
The data is saved in a compressed binary format (Python’s builtin pickle format with protocol 4 and gzip).
Loaded files can be immediately plotted: result = pb.load("file.pbz") and then result.
plot() to see the data.

• The eigenvalue solvers now have a calc_ldos method for computing the local density of states as a
function of energy (in addition to the existing calc_spatial_ldos).

• Improved plotting of Lattice objects. The view can now be rotated by passing the axis="xz" argu-
ment, or any other combination of x, y and z to define the plotting plane.

Deprecations and breaking changes

• Added Lattice.add_aliases() method. The old Lattice.add_sublattice(...,
alias=name) way of creating aliases is deprecated.

• The greens module has been deprecated. This functionality is now covered by the KPM methods.

• The internal storage format of the Lattice and System classes has been revised. This shouldn’t affect
most users who don’t need access to the low-level data.

v0.8.2 | 2017-01-26

• Added support for Python 3.6 (pybinding is available as a binary wheel for Windows and macOS).

• Fixed compatibility with matplotlib v2.0.

• Fixed a few minor bugs.

6.6. v0.8.2 | 2017-01-26 15

Pybinding User Guide, Release 0.9.4

v0.8.1 | 2016-11-11

• Structure plotting functions have been improved with better automatic scaling of lattice site circle sizes and
hopping line widths.

• Fixed Brillouin zone calculation for cases where the angle between lattice vectors is obtuse (#1). Thanks to
@obgeneralao (Oliver B Generalao) for reporting the issue.

• Fixed a flaw in the example of a phosphorene lattice (there were extraneous t5 hoppings). Thanks to Long-
long Li for pointing this out.

• Fixed missing CUDA source files in PyPI sdist package.

• Revised advanced installation instructions: compiling from source code and development.

v0.8.0 | 2016-07-01

New features

• Added support for scattering models. Semi-infinite leads can be attached to a finite-sized scattering region.
Take a look at the documentation, specifically section 10 of the “Basic Tutorial”, for details on how to
construct such models.

• Added compatibility with Kwant for transport calculations. A model can be constructed in pybinding and
then exported using the Model.tokwant() method. This makes it possible to use Kwant’s excellent
solver for transport problems. While Kwant does have its own model builder, pybinding is much faster in
this regard: by two orders of magnitude, see the “Benchmarks” page in the documentation for a performance
comparison.

• Experimental: Initial CUDA implementation of KPM Green’s function (only for diagonal elements for
now). See the “Experimental Features” section of the documentation.

Improvements

• The performance of the KPM Green’s function implementation has been improved significantly: by a factor
of 2.5x. The speedup was achieved with CPU code using portable SIMD intrinsics thanks to libsimdpp.

• The Green’s function can now be computed for multiple indices simultaneously.

• The spatial origin of a lattice can be adjusted using the Lattice.offset attribute. See the “Advanced
Topics” section.

Breaking changes

• The interface for structure plotting (as used in System.plot() and StructureMap) has been greatly
improved. Some of the changes are not backwards compatible and may require some minor code changes
after upgrading. See the “Plotting Guide” section of the documentation for details.

• The interfaces for the Bands and StructureMap result objects have been revised. Specifically, structure
maps are now more consistent with ndarrays, so the old smap.filter(smap.x > 0) is replaced by
smap2 = smap[smap.x > 0]. The “Plotting Guide” has a few examples and there is a full method
listing in the “API Reference” section.

Documentation

• The API reference has been completely revised and now includes a summary on the main page.

16 Chapter 6. Changelog

https://github.com/dean0x7d/pybinding/issues/1
https://github.com/obgeneralao
http://kwant-project.org/
https://github.com/p12tic/libsimdpp

Pybinding User Guide, Release 0.9.4

• A few advanced topics are now covered, including some aspects of plotting. A few more random examples
have also been added.

• Experimental features are now documented.

Bug fixes

• Fixed translational symmetry skipping directions for some 2D systems.

• Fixed computation of off-diagonal Green’s function elements with opt_level > 0

• Fixed some issues with shapes which were not centered at (x, y) = (0, 0).

v0.7.2 | 2016-03-14

• Lots of improvements to the documentation. The tutorial pages can now be downloaded and run interactively
as Jupyter notebooks. The entire user guide is also available as a PDF file.

• The sub_id and hop_id modifier arguments can now be compared directly with their friendly string
names. For example, this makes it possible to write sub_id == 'A' instead of the old sub_id ==
lattice['A'] and hop_id == 'gamma1' instead of hop_id == lattice('gamma1').

• The site state modifier can automatically remove dangling sites which have less than a certain number of
neighbors (set using the min_neighbors decorator argument).

• Added optional sites argument for state, position, and onsite energy modifiers. It can be used instead of
the x, y, z, sub_id arguments and contains a few helper methods. See the modifier API reference
for more information.

• Fixed a bug where using a single KPM object for multiple calculations could return wrong results.

• Experimental hopping_generatorwhich can be used to add a new hopping family connecting arbitrary
sites independent of the main Lattice definition. This is useful for creating additional local hoppings,
e.g. to model defects.

v0.7.1 | 2016-02-08

• Added support for double-precision floating point. Single precision is used by default, but it will be switched
automatically to double if required by an onsite or hopping modifier.

• Added support for the 32-bit version of Python

• Tests are now included in the installed package. They can be run with:

import pybinding as pb
pb.tests()

• Available as a binary wheel for 32-bit and 64-bit Windows (Python 3.5 only) and OS X (Python 3.4 and 3.5)

v0.7.0 | 2016-02-01

Initial release

6.9. v0.7.2 | 2016-03-14 17

Pybinding User Guide, Release 0.9.4

18 Chapter 6. Changelog

CHAPTER 7

Installation

Pybinding can be installed on Windows, Linux or Mac, with the following prerequisites:

• Python 3.5 or newer (Python 2.x is not supported)

• The SciPy stack of scientific packages, with required versions:

– numpy >= v1.12

– scipy >= v0.19

– matplotlib >= v2.0

• If you’re using Linux, you’ll also need GCC >= v5.0 (or clang >= v3.5) and CMake >= v3.1.

You can install all of this in two ways:

Quick Install

The easiest way to install Python and SciPy is with Anaconda, a free scientific Python distribution for Windows,
Linux and Mac. The following install guide will show you how to install the minimal version of Anaconda,
Miniconda, and then install pybinding.

Note: If you run into any problems during the install process, check out the Troubleshooting section.

Windows

1. Download the Miniconda Python 3.x installer: Miniconda3-latest-Windows-x86_64.exe. Run it and accept
the default options during the installation.

2. Open Command Prompt from the Start menu. Enter the following command to install the scientific
Python packages with Miniconda:

conda install numpy scipy matplotlib

3. The next command will download and install pybinding:

19

https://www.python.org/
http://www.scipy.org/
https://www.continuum.io/downloads
http://conda.pydata.org/miniconda.html
https://repo.continuum.io/miniconda/Miniconda3-latest-Windows-x86_64.exe

Pybinding User Guide, Release 0.9.4

pip install pybinding

That’s it, all done. Check out the Tutorial for some example scripts to get started. To run a script file, e.g.
example1.py, enter the following command:

python example1.py

Linux

You will need gcc and g++ 5.0 or newer. To check, enter the following in terminal:

g++ --version

If your version is outdated, check with your Linux distribution on how to upgrade. If you have version 5.8 or
newer, proceed with the installation.

1. Download the Miniconda Python 3.x installer: Miniconda3-latest-Linux-x86_64.sh. Run it in your terminal
window:

bash Miniconda3-latest-Linux-x86_64.sh

Follow the installation steps. You can accept most of the default values, but make sure that you type yes to
add Miniconda to PATH:

Do you wish the installer to prepend the Miniconda3 install location
to PATH in your /home/<user_name>/.bashrc ? [yes|no]
[no] >>> yes

Now, close your terminal window and open a new one for the changes to take effect.

2. Install CMake and the scientific Python packages:

conda install cmake numpy scipy matplotlib

3. The next command will download and install pybinding:

pip install pybinding

That’s it, all done. Check out the Tutorial for some example scripts to get started. To run a script file, e.g.
example1.py, enter the following command:

python example1.py

Mac OS X

1. Download the Miniconda Python 3.x installer: Miniconda3-latest-MacOSX-x86_64.sh. Run it in your
terminal window:

bash Miniconda3-latest-MacOSX-x86_64.sh

Follow the installation steps. You can accept most of the default values, but make sure that you type yes to
add Miniconda to PATH:

Do you wish the installer to prepend the Miniconda3 install location
to PATH in your /Users/<user_name>/.bash_profile ? [yes|no]
[yes] >>> yes

Now, close your terminal window and open a new one for the changes to take effect.

20 Chapter 7. Installation

https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

Pybinding User Guide, Release 0.9.4

2. Install CMake and the scientific Python packages:

conda install cmake numpy scipy matplotlib

3. The next command will download and install pybinding:

pip install pybinding

That’s it, all done. Check out the Tutorial for some example scripts to get started. To run a script file, e.g.
example1.py, enter the following command:

python example1.py

Troubleshooting

If you already had Python installed, having multiple distributions may cause trouble in some cases. Check the
PATH environment variable and make sure the Miniconda has priority.

Advanced Install

If you’ve completed the Quick Install guide, you can skip right to the Tutorial. This section is intended for users
who wish to have more control over the install process or to compile from source code. If you’re looking for a
simple solution, see the Quick Install guide.

Without Anaconda

If you already have Python 3.x installed from python.org or anywhere else, you can use your existing distribution
instead of Anaconda (or Miniconda). Note that this does require manually installing some dependencies.

Windows

1. Install the Visual C++ 2015 Runtime.

2. Install numpy, scipy and matplotlib binaries from Christoph Gohlke.

3. Pybinding is available as a binary wheel on PyPI. Install it with:

pip3 install pybinding

Linux

Building pybinding from source is the only option on Linux.

1. Make sure you have gcc and g++ v5.0 or newer. To check, run g++ --version in your terminal. Refer
to instruction from your Linux distribution in case you need to upgrade. Alternatively, you can use clang
v3.5 or newer for compilation instead of gcc.

2. Install CMake >= v3.1 from their website or your package manager, e.g. apt-get install cmake.

3. Install numpy, scipy and matplotlib with the minimal versions as stated previously. The easiest way is to use
your package manager, but note that the main repositories tend to keep outdated versions of SciPy packages.
For instructions on how to compile the latest packages from source, see http://www.scipy.org/.

4. Install pybinding using pip:

7.2. Advanced Install 21

https://www.python.org/
https://www.microsoft.com/en-us/download/details.aspx?id=53587
http://www.lfd.uci.edu/~gohlke/pythonlibs/
https://pypi.python.org/pypi
https://cmake.org/
http://www.scipy.org/

Pybinding User Guide, Release 0.9.4

pip3 install pybinding

macOS

All the required SciPy packages and pybinding are available as binary wheels on PyPI, so the installation is very
simple:

pip3 install pybinding

Note that pip will resolve all the SciPy dependencies automatically.

Compiling from source

If you want to get the latest version (the master branch on GitHub), you will need to compile it from source code.
Before you proceed, you’ll need to have numpy, scipy and matplotlib. They can be installed either using Anaconda
or following the procedure in the section just above this one. Once you have everything, follow the steps below to
compile and install pybinding.

Windows

1. Install Visual Studio 2017 Community. The Visual C++ compiler is required, so make sure to select it
during the customization step of the installation (C++ may not be installed by default).

2. Install CMake.

3. Build and install pybinding. The following command will instruct pip to download the latest source code
from GitHub, compile everything and install the package:

pip3 install git+https://github.com/dean0x7d/pybinding.git

Linux

You’ll need gcc/g++ >= v5.0 (or clang >= v3.5) and CMake >= v3.1. See the previous section for details. If you
have everything, pybinding can be installed from the latest source code using pip:

pip3 install git+https://github.com/dean0x7d/pybinding.git

macOS

1. Install Homebrew.

2. Install CMake: brew install cmake

3. Build and install pybinding. The following command will instruct pip to download the latest source code
from GitHub, compile everything and install the package:

pip3 install git+https://github.com/dean0x7d/pybinding.git

For development

If you would like to work on the pybinding source code itself, you can install it in an editable development
environment. The procedure is similar to the “Compiling from source” section with the exception of the final step:

22 Chapter 7. Installation

https://pypi.python.org/pypi
https://www.visualstudio.com/vs/community/
https://cmake.org/
http://brew.sh/

Pybinding User Guide, Release 0.9.4

1. Clone the repository using git (you can change the url to your own GitHub fork):

git clone --recursive https://github.com/dean0x7d/pybinding.git

2. Tell pip to install in development mode:

cd pybinding
pip3 install -e .

If you are new to Python/SciPy or if you’re just not sure how to proceed, go with the Quick Install option. It
will show you how to easily set up a new Python environment and install everything. That quick guide will
be everything you need in most cases. However, If you would like a custom setup within your existing Python
environment and you have experience compiling binary packages, you can check out the Advanced Install option.

7.2. Advanced Install 23

Pybinding User Guide, Release 0.9.4

24 Chapter 7. Installation

CHAPTER 8

Tutorial

This section will present the essential features of pybinding with example code to get you started quickly. The
tutorial assumes that you already have a basic understanding of tight-binding theory, the Python 3 programming
language and at least part of the scientific Python stack (SciPy). But don’t worry: while this tutorial will not
specifically explain basic language and scientific Python concepts, they are presented in a straightforward way
and will be easy to pick up on the fly.

Imports

This tutorial includes two kinds of example code: complete files and short code samples. Files are self-contained
examples which can be downloaded and run. Code snippets are included directly within the tutorial text to illustrate
features, thus they omit some common and repetitive code (like import statements) in order to save space and not
distract from the main point. It is assumed that the following lines precede any other code:

import pybinding as pb
import numpy as np
import matplotlib.pyplot as plt

pb.pltutils.use_style()

The pb alias is always used for importing pybinding. This is similar to the common scientific package aliases: np
and plt. These import conventions are used consistently in the tutorial.

The function pb.pltutils.use_style() applies pybinding’s default style settings for matplotlib. This is
completely optional and only affects the aesthetics of the generated figures.

Lattice

A Lattice object describes the unit cell of a crystal lattice. This includes the primitive vectors, positions of
sublattice sites and hopping parameters which connect those sites. All of this structural information is used to
build up a larger system by translation.

25

https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
http://www.scipy.org/docs.html

Pybinding User Guide, Release 0.9.4

Square lattice

Starting from the basics, we’ll create a simple square lattice.

import pybinding as pb

d = 0.2 # [nm] unit cell length
t = 1 # [eV] hopping energy

create a simple 2D lattice with vectors a1 and a2
lattice = pb.Lattice(a1=[d, 0], a2=[0, d])
lattice.add_sublattices(

('A', [0, 0]) # add an atom called 'A' at position [0, 0]
)
lattice.add_hoppings(

(relative_index, from_sublattice, to_sublattice, energy)
([0, 1], 'A', 'A', t),
([1, 0], 'A', 'A', t)

)

It may not be immediately obvious what this code does. Fortunately, Lattice objects have a convenient
Lattice.plot() method to easily visualize the constructed lattice.

lattice.plot() # plot the lattice that was just constructed
plt.show() # standard matplotlib show() function

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

a1

a2

A

[0, 1]

[0, -1]

[1, 0][-1, 0]

In the figure we see lattice vectors 𝑎1 and 𝑎2 which were used to initialize Lattice. These vectors describe a
Bravais lattice with an infinite set of positions,

�⃗� = 𝑛1�⃗�1 + 𝑛2�⃗�2,

where 𝑛1 and 𝑛2 are integers. The blue circle labeled A represents the atom which was created with the
Lattice.add_sublattices() method. The slightly faded out circles represent translations of the lattice in
the primitive vector directions, i.e. using the integer index [𝑛1, 𝑛2].

The hoppings are specified using the Lattice.add_hoppings() method and each one consists of
(relative_index, from_sublattice, to_sublattice, energy):

• The main cell always has the index [𝑛1, 𝑛2] = [0, 0]. The relative_index represents the number
of integer steps needed to reach another cell starting from the main one. Each cell is labeled with its
relative_index, as seen in the figure.

• A hopping is created between the main cell and a neighboring cell specified by relative_index. Two
hoppings are added in the definition: [0, 1] and [1, 0]. The opposite hoppings [0, -1] and [-1, 0] are added
automatically to maintain hermiticity.

26 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

• This lattice consists of only one sublattice so the from and to sublattice fields are trivial. Generally,
from_sublattice indicates the sublattice in the [0, 0] cell and to_sublattice in the neighboring
cell. This will be explained further in the next example.

• The last parameter is simply the value of the hopping energy.

It’s good practice to build the lattice inside a function to make it easily reusable. Here we define the same lattice
as before, but note that the unit cell length and hopping energy are function arguments, which makes the lattice
easily configurable.

def square_lattice(d, t):
lat = pb.Lattice(a1=[d, 0], a2=[0, d])
lat.add_sublattices(('A', [0, 0]))
lat.add_hoppings(([0, 1], 'A', 'A', t),

([1, 0], 'A', 'A', t))
return lat

we can quickly set a shorter unit length `d`
lattice = square_lattice(d=0.1, t=1)
lattice.plot()
plt.show()

-0.2 -0.1 0.0 0.1 0.2
x (nm)

-0.2

-0.1

0.0

0.1

0.2

y
(n

m
)

a1

a2

A

[0, 1]

[0, -1]

[1, 0][-1, 0]

Graphene

The next example shows a slightly more complicated two-atom lattice of graphene.

from math import sqrt

def monolayer_graphene():
a = 0.24595 # [nm] unit cell length
a_cc = 0.142 # [nm] carbon-carbon distance
t = -2.8 # [eV] nearest neighbour hopping

lat = pb.Lattice(a1=[a, 0],
a2=[a/2, a/2 * sqrt(3)])

lat.add_sublattices(('A', [0, -a_cc/2]),
('B', [0, a_cc/2]))

lat.add_hoppings(
inside the main cell
([0, 0], 'A', 'B', t),
between neighboring cells
([1, -1], 'A', 'B', t),
([0, -1], 'A', 'B', t)

)

8.2. Lattice 27

Pybinding User Guide, Release 0.9.4

return lat

lattice = monolayer_graphene()
lattice.plot()
plt.show()

-0.2 -0.1 0.0 0.1 0.2
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

a1

a2

A

B

[1, -1]

[-1, 1]

[0, -1]

[0, 1]

The Lattice.add_sublattices() method creates atoms A and B (blue and orange) at different offsets:
[0,−𝑎𝑐𝑐/2] and [0, 𝑎𝑐𝑐/2]. Once again, the translated cells are given at positions �⃗� = 𝑛1�⃗�1 + 𝑛2�⃗�2, however, this
time the lattice vectors are not perpendicular which makes the integer indices [𝑛1, 𝑛2] slightly more complicate
(see the labels in the figure).

The hoppings are defined as follows:

• ([0, 0], 'A', 'B', t) specifies the hopping inside the main cell, from atom A to B. The main [0,0]
cell is never labeled in the figure, but it is always the central cell where the lattice vectors originate.

• ([1, -1], 'A', 'B', t) specifies the hopping between [0, 0] and [1, -1], from A to B. The oppo-
site hopping is added automatically: [-1, 1], from B to A. In the tight-binding matrix representation, the
opposite hopping is the Hermitian conjugate of the first one. The lattice specification always requires ex-
plicitly mentioning only one half of the hoppings while the other half is automatically added to guarantee
hermiticity.

• ([0, -1], 'A', 'B', t) is handled in the very same way.

The Lattice.plot() method will always faithfully draw any lattice that has been specified. It serves as a
handy visual inspection tool.

Brillouin zone

The method Lattice.plot_brillouin_zone() is another handy tool that does just as its name implies.

lattice = monolayer_graphene()
lattice.plot_brillouin_zone()

28 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-20 -10 0 10 20
kx(nm 1)

-20

-10

0

10

20

k y
(n

m
1)

b1

b2

[-2.7 , -4.7] [2.7 , -4.7]

[5.4 , 0]

[2.7 , 4.7][-2.7 , 4.7]

[-5.4 , 0]

The reciprocal lattice vectors 𝑏1 and 𝑏2 are calculated automatically based on the real space vectors. There is no
need to specify them manually. The first Brillouin zone is determined as the Wigner–Seitz cell in reciprocal space.
By default, the plot method labels the vertices of the Brillouin zone.

Material repository

A few common lattices are included in pybinding’s Material Repository. You can get started quickly by importing
one of them. For example:

from pybinding.repository import graphene
lattice = graphene.bilayer()
lattice.plot()

-0.2 -0.1 0.0 0.1 0.2
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

y
(n

m
) a1a2

B1

B2

A1

[0, -1]

[0, 1]

[-1, 0]

[1, 0]

[0, -1]

[0, 1]

[-1, 0]

[1, 0]

Further reading

Additional features of the Lattice class are explained in the Advanced Topics section. For more lattice specifi-
cations check out the examples section.

Example

"""Create and plot a monolayer graphene lattice and it's Brillouin zone"""
import pybinding as pb

8.2. Lattice 29

Pybinding User Guide, Release 0.9.4

import matplotlib.pyplot as plt
from math import sqrt

pb.pltutils.use_style()

def monolayer_graphene():
"""Return the lattice specification for monolayer graphene"""
a = 0.24595 # [nm] unit cell length
a_cc = 0.142 # [nm] carbon-carbon distance
t = -2.8 # [eV] nearest neighbour hopping

create a lattice with 2 primitive vectors
lat = pb.Lattice(

a1=[a, 0],
a2=[a/2, a/2 * sqrt(3)]

)

lat.add_sublattices(
name and position
('A', [0, -a_cc/2]),
('B', [0, a_cc/2])

)

lat.add_hoppings(
inside the main cell
([0, 0], 'A', 'B', t),
between neighboring cells
([1, -1], 'A', 'B', t),
([0, -1], 'A', 'B', t)

)

return lat

lattice = monolayer_graphene()
lattice.plot()
plt.show()

-0.2 -0.1 0.0 0.1 0.2
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

a1

a2

A

B

[1, -1]

[-1, 1]

[0, -1]

[0, 1]

lattice.plot_brillouin_zone()
plt.show()

30 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-20 -10 0 10 20
kx(nm 1)

-20

-10

0

10

20

k y
(n

m
1)

b1

b2

[-2.7 , -4.7] [2.7 , -4.7]

[5.4 , 0]

[2.7 , 4.7][-2.7 , 4.7]

[-5.4 , 0]

Band structure

In order to calculate the band structure of a crystal lattice, this section introduces the concepts of a Model and a
Solver.

Model

A Model contains the full tight-binding description of the physical system that we wish to solve. We’ll start by
assigning a lattice to the model, and we’ll use a pre-made one from the material repository.

from pybinding.repository import graphene

model = pb.Model(graphene.monolayer())
model.plot()

-0.1 0.0 0.1
x (nm)

-0.1

0.0

0.1

y
(n

m
)

The result is not very exciting: just a single graphene unit cell with 2 atoms and a single hopping between them.
The model does not assume translational symmetry or any other physical property. Given a lattice, it will just
create a single unit cell. The model has a System attribute which keeps track of structural properties like the
positions of lattice sites and the way they are connected, as seen in the figure above. The raw data can be accessed
directly:

>>> model.system.x
[0, 0]

8.3. Band structure 31

Pybinding User Guide, Release 0.9.4

>>> model.system.y
[-0.071 0.071]
>>> model.system.sublattices
[0 1]

Each attribute is a 1D array where the number of elements is equal to the total number of lattice sites in the system.
The model also has a hamiltonian attribute:

>>> model.hamiltonian
(0, 1) -2.8
(1, 0) -2.8

It’s a sparse matrix (see scipy.sparse.csr_matrix) which corresponds to the tight-binding Hamiltonian
of our model. The output above shows the default sparse representation of the data where each line corresponds
to (row, col) value. Alternatively, we can see the dense matrix output:

>>> model.hamiltonian.todense()
[[0.0 -2.8]
[-2.8 0.0]]

Next, we include translational_symmetry() to create an infinite graphene sheet.

model = pb.Model(
graphene.monolayer(),
pb.translational_symmetry()

)
model.plot()

-0.2 -0.1 0.0 0.1 0.2
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

The red lines indicate hoppings on periodic boundaries. The lighter colored circles represent the translations of
the unit cell. The number of translations is infinite, but the plot only presents the first one in each lattice vector
direction.

Solver

A Solver can exactly calculate the eigenvalues and eigenvectors of a Hamiltonian matrix. We’ll take a look at
various Eigenvalue solvers and their capabilities in a later section, but right now we’ll just grab the lapack()
solver which is the simplest and most appropriate for small systems.

>>> model = pb.Model(graphene.monolayer())
>>> solver = pb.solver.lapack(model)
>>> solver.eigenvalues
[-2.8 2.8]
>>> solver.eigenvectors

32 Chapter 8. Tutorial

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix

Pybinding User Guide, Release 0.9.4

[[-0.707 -0.707]
[-0.707 0.707]]

Beyond just the eigenvalues and eigenvectors properties, Solver has a convenient calc_bands()
method which can be used to calculate the band structure of our model.

from math import sqrt, pi

model = pb.Model(graphene.monolayer(), pb.translational_symmetry())
solver = pb.solver.lapack(model)

a_cc = graphene.a_cc
Gamma = [0, 0]
K1 = [-4*pi / (3*sqrt(3)*a_cc), 0]
M = [0, 2*pi / (3*a_cc)]
K2 = [2*pi / (3*sqrt(3)*a_cc), 2*pi / (3*a_cc)]

bands = solver.calc_bands(K1, Gamma, M, K2)
bands.plot(point_labels=['K', r'Γ', 'M', 'K'])

K M K
k-space

-10

-5

0

5

10

E
(e

V)

The points Γ,𝐾 and 𝑀 are used to draw a path in the reciprocal space of graphene’s Brillouin zone and Solver.
calc_bands() calculates the band energy along that path. The return value of the method is a Bands result
object.

All result objects have built-in plotting methods. Aside from the basic plot() seen above, Bands also has
plot_kpath() which presents the path in reciprocal space. Plots can easily be composed, so to see the path in
the context of the Brillouin zone, we can simply plot both:

model.lattice.plot_brillouin_zone(decorate=False)
bands.plot_kpath(point_labels=['K', r'Γ', 'M', 'K'])

8.3. Band structure 33

Pybinding User Guide, Release 0.9.4

-20 -10 0 10 20
kx(nm 1)

-20

-10

0

10

20
k y

(n
m

1)

K

M K

The extra argument for Lattice.plot_brillouin_zone() turns off the reciprocal lattice vectors and
vertex coordinate labels (as seen in the previous section).

Note: The band structure along a path in k-space can also be calculated manually by saving an array of Solver.
eigenvalues at different k-points. This process is shown on the Eigensolver page.

Switching lattices

We can easily switch to a different material, just by passing a different lattice to the model. For this example,
we’ll use our pre-made graphene.bilayer() from the Material Repository. But you can create any lattice
as described in the previous section: Lattice.

model = pb.Model(graphene.bilayer())
model.plot()

-0.1 0.0 0.1
x (nm)

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

Without translational_symmetry(), the model is just a single unit cell with 4 atoms. Our bilayer lattice
uses AB-stacking where a pair of atoms are positioned one on top of the another. By default, the Model.plot()
method shows the xy-plane, so one of the bottom atoms isn’t visible. We can pass an additional plot argument to
see the yz-plane:

model = pb.Model(graphene.bilayer())
model.plot(axes='yz')

34 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-0.1 0.0 0.1 0.2 0.3
y (nm)

-0.4

-0.3

-0.2

-0.1

0.0

0.1
z (

nm
)

To compute the band structure, we’ll need to include translational_symmetry().

model = pb.Model(graphene.bilayer(), pb.translational_symmetry())
model.plot()

-0.2 -0.1 0.0 0.1 0.2
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

y
(n

m
)

As before, the red hoppings indicate periodic boundaries and the lighter colored circles represent the first of
an infinite number of translation units. We’ll compute the band structure for the same Γ, 𝐾 and 𝑀 points as
monolayer graphene:

solver = pb.solver.lapack(model)
bands = solver.calc_bands(K1, Gamma, M, K2)
bands.plot(point_labels=['K', r'Γ', 'M', 'K'])

8.3. Band structure 35

Pybinding User Guide, Release 0.9.4

K M K
k-space

-10

-5

0

5

10
E

(e
V)

Further reading

Check out the examples section for more band structure calculations with various other lattices. Eigenvalue solvers
will be covered in more detail at a later point in the tutorial, but this is enough information to get started. The next
few sections are going to be dedicated to model building.

Example

"""Calculate and plot the band structure of monolayer graphene"""
import pybinding as pb
import matplotlib.pyplot as plt
from math import sqrt, pi
from pybinding.repository import graphene

pb.pltutils.use_style()

model = pb.Model(
graphene.monolayer(), # predefined lattice from the material repository
pb.translational_symmetry() # creates an infinite sheet of graphene

)
solver = pb.solver.lapack(model) # eigensolver from the LAPACK library

significant points in graphene's Brillouin zone
a_cc = graphene.a_cc # carbon-carbon distance
Gamma = [0, 0]
K1 = [-4*pi / (3*sqrt(3)*a_cc), 0]
M = [0, 2*pi / (3*a_cc)]
K2 = [2*pi / (3*sqrt(3)*a_cc), 2*pi / (3*a_cc)]

plot the bands through the desired points
bands = solver.calc_bands(K1, Gamma, M, K2)
bands.plot(point_labels=['K', r'Γ', 'M', 'K'])
plt.show()

36 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

K M K
k-space

-10

-5

0

5

10
E

(e
V)

Finite size

This section introduces the concept of shapes with classes Polygon and FreeformShape which are used to
model systems of finite size. The sparse eigensolver arpack() is also introduced as a good tool for exactly
solving larger Hamiltonian matrices.

Primitive

The simplest finite-sized system is just the unit cell of the crystal lattice.

from pybinding.repository import graphene

model = pb.Model(graphene.monolayer())
model.plot()

-0.1 0.0 0.1
x (nm)

-0.1

0.0

0.1

y
(n

m
)

The unit cell can also be replicated a number of times to create a bigger system.

model = pb.Model(
graphene.monolayer(),
pb.primitive(a1=5, a2=3)

)
model.plot()
model.lattice.plot_vectors(position=[0.6, -0.25])

8.4. Finite size 37

Pybinding User Guide, Release 0.9.4

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

y
(n

m
)

a1

a2

The primitive() parameter tells the model to replicate the unit cell 5 times in the 𝑎1 vector direction and 3
times in the 𝑎2 direction. However, to model realistic systems we need proper shapes.

Polygon

The easiest way to create a 2D shape is with the Polygon class. For example, a simple rectangle:

def rectangle(width, height):
x0 = width / 2
y0 = height / 2
return pb.Polygon([[x0, y0], [x0, -y0], [-x0, -y0], [-x0, y0]])

shape = rectangle(1.6, 1.2)
shape.plot()

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

y
(n

m
)

A Polygon is initialized with a list of vertices which should be given in clockwise or counterclockwise order.
When added to a Model the lattice will expand to fill the shape.

model = pb.Model(
graphene.monolayer(),
rectangle(width=1.6, height=1.2)

)
model.plot()

38 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
y

(n
m

)

To help visualize the shape and the expanded lattice, the polygon outline can be plotted on top of the system by
calling both plot methods one after another.

def trapezoid(a, b, h):
return pb.Polygon([[-a/2, 0], [-b/2, h], [b/2, h], [a/2, 0]])

model = pb.Model(
graphene.monolayer(),
trapezoid(a=3.2, b=1.4, h=1.5)

)
model.plot()
model.shape.plot()

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

y
(n

m
)

In general, a shape does not depend on a specific material, so it can be easily reused. Here, we shall switch to a
graphene.bilayer() lattice, but we’ll keep the same trapezoid shape as defined earlier:

model = pb.Model(
graphene.bilayer(),
trapezoid(a=3.2, b=1.4, h=1.5)

)
model.plot()

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

y
(n

m
)

8.4. Finite size 39

Pybinding User Guide, Release 0.9.4

Freeform shape

Unlike a Polygonwhich is defined by a list of vertices, a FreeformShape is defined by a contains function
which determines if a lattice site is inside the desired shape.

def circle(radius):
def contains(x, y, z):

return np.sqrt(x**2 + y**2) < radius
return pb.FreeformShape(contains, width=[2*radius, 2*radius])

model = pb.Model(
graphene.monolayer(),
circle(radius=2.5)

)
model.plot()

-3 -2 -1 0 1 2 3
x (nm)

-3

-2

-1

0

1

2

3

y
(n

m
)

The width parameter of FreeformShape specifies the bounding box width. Only sites inside the bounding
box will be considered for the shape. It’s like carving a sculpture from a block of stone. The bounding box can be
thought of as the stone block, while the contains function is the carving tool that can give the fine detail of the
shape.

As with Polygon, we can visualize the shape with the FreeformShape.plot() method.

def ring(inner_radius, outer_radius):
def contains(x, y, z):

r = np.sqrt(x**2 + y**2)
return np.logical_and(inner_radius < r, r < outer_radius)

return pb.FreeformShape(contains, width=[2*outer_radius, 2*outer_radius])

shape = ring(inner_radius=1.4, outer_radius=2)
shape.plot()

40 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
y

(n
m

)

The shaded area indicates the shape as determined by the contains function. Creating a model will cause the
lattice to fill in the shape.

model = pb.Model(
graphene.monolayer(),
ring(inner_radius=1.4, outer_radius=2)

)
model.plot()
model.shape.plot()

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

y
(n

m
)

Note that the ring example uses np.logical_and instead of the plain and keyword. This is because the x,
y, z positions are not given as scalar numbers but as numpy arrays. Array comparisons return boolean arrays:

>>> x = np.array([7, 2, 3, 5, 1])
>>> x < 5
[False, True, True, False, True]
>>> 2 < x and x < 5
ValueError: ...
>>> np.logical_and(2 < x, x < 5)
[False, False, True, False, False]

The and keyword can only operate on scalar values, but np.logical_and can consider arrays. Likewise,
math.sqrt does not work with arrays, but np.sqrt does.

8.4. Finite size 41

Pybinding User Guide, Release 0.9.4

Composite shape

Complicated system geometry can also be produced by composing multiple simple shapes. The following example
gives a quick taste of how it works. For a full overview of this functionality, see the Composite shapes section.

Simple shapes
rectangle = pb.rectangle(x=6, y=1)
hexagon = pb.regular_polygon(num_sides=6, radius=1.92, angle=np.pi/6)
circle = pb.circle(radius=0.6)

Compose them naturally
shape = rectangle + hexagon - circle

model = pb.Model(graphene.monolayer(), shape)
model.shape.plot()
model.plot()

-3 -2 -1 0 1 2 3
x (nm)

-2

-1

0

1

2

y
(n

m
)

Spatial LDOS

Now that we have a ring structure, we can exactly diagonalize its model.hamiltonian using a Solver. We
previously used the lapack() solver to find all the eigenvalues and eigenvectors, but this is not efficient for
larger systems. The sparse arpack() solver can calculate a targeted subset of the eigenvalues, which is usually
desired and much faster. In this case, we are interested only in the 20 lowest energy states.

model = pb.Model(
graphene.monolayer(),
ring(inner_radius=1.4, outer_radius=2)

)
solver = pb.solver.arpack(model, k=20) # only the 20 lowest eigenstates

ldos = solver.calc_spatial_ldos(energy=0, broadening=0.05) # eV
ldos.plot(site_radius=(0.03, 0.12))
pb.pltutils.colorbar(label="LDOS")

42 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
y

(n
m

)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

LD
OS

1e-1

The convenient Solver.calc_spatial_ldos() method calculates the local density of states (LDOS) at
every site for the given energy with a Gaussian broadening. The returned object is a StructureMapwhich holds
the LDOS data. The StructureMap.plot() method will produce a figure similar to Model.plot(), but
with a colormap indicating the LDOS value at each lattice site. In addition, the site_radius argument specifies
a range of sizes which will cause the low intensity sites to appear as small circles while high intensity ones become
large. The states with a high LDOS are clearly visible on the outer and inner edges of the graphene ring structure.

Further reading

For more finite-sized systems check out the examples section.

Example

"""Model a graphene ring structure and calculate the local density of states"""
import pybinding as pb
import numpy as np
import matplotlib.pyplot as plt
from pybinding.repository import graphene

pb.pltutils.use_style()

def ring(inner_radius, outer_radius):
"""A simple ring shape"""
def contains(x, y, z):

r = np.sqrt(x**2 + y**2)
return np.logical_and(inner_radius < r, r < outer_radius)

return pb.FreeformShape(contains, width=[2 * outer_radius, 2 * outer_radius])

model = pb.Model(
graphene.monolayer(),
ring(inner_radius=1.4, outer_radius=2) # length in nanometers

)

model.plot()
plt.show()

8.4. Finite size 43

Pybinding User Guide, Release 0.9.4

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
y

(n
m

)

only solve for the 20 lowest energy eigenvalues
solver = pb.solver.arpack(model, k=20)
ldos = solver.calc_spatial_ldos(energy=0, broadening=0.05) # LDOS around 0 eV
ldos.plot(site_radius=(0.03, 0.12))
pb.pltutils.colorbar(label="LDOS")
plt.show()

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

y
(n

m
)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

LD
OS

1e-1

Shape and symmetry

The last two sections showed how to model shape and symmetry individually, but we can be more creative and
combine the two.

Nanoribbons

To create a graphene nanoribbon, we’ll need a shape to give the finite width of the ribbon while the infinite length
is achieved by imposing translational symmetry.

from pybinding.repository import graphene

model = pb.Model(
graphene.monolayer(),
pb.rectangle(1.2), # nm

44 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

pb.translational_symmetry(a1=True, a2=False)
)
model.plot()
model.lattice.plot_vectors(position=[-0.6, 0.3]) # nm

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
(n

m
)

a1

a2

As before, the central darker circles represent the main cell of the nanoribbon, the lighter colored circles are the
translations due to symmetry and the red lines are boundary hoppings. The two arrows in the upper left corner
show the primitive lattice vectors of graphene.

The translational_symmetry() is applied only in the 𝑎1 lattice vector direction which gives the ribbon
its infinite length, but the symmetry is disabled in the 𝑎2 direction so that the finite size of the shape is preserved.
The builtin rectangle() shape gives the nanoribbon its 1.2 nm width.

The band structure calculations work just as before.

from math import pi, sqrt

solver = pb.solver.lapack(model)
a = graphene.a_cc * sqrt(3) # ribbon unit cell length
bands = solver.calc_bands(-pi/a, pi/a)
bands.plot()

-4.1 4.1
k-space

-10

-5

0

5

10

E
(e

V)

This is the characteristic band structure for zigzag nanoribbons with zero-energy edge states. If we change the di-
rection of the translational symmetry to 𝑎2, the orientation will change, but we will still have a zigzag nanoribbon.

model = pb.Model(
graphene.monolayer(),
pb.rectangle(1.2), # nm
pb.translational_symmetry(a1=False, a2=True)

8.5. Shape and symmetry 45

Pybinding User Guide, Release 0.9.4

)
model.plot()
model.lattice.plot_vectors(position=[0.6, -0.25]) # nm

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

y
(n

m
)

a1

a2

Because of the nature of graphene’s 2-atom unit cell and lattice vector, only zigzag edges can be created. In order
to create armchair edges, we must introduce a different unit cell with 4 atoms.

model = pb.Model(graphene.monolayer_4atom())
model.plot()
model.lattice.plot_vectors(position=[-0.13, -0.13])

-0.1 0.0 0.1 0.2
x (nm)

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

a1

a2

Note: To learn how to create this 4-atom unit cell, see Constructing a supercell.

Notice that the lattice vectors 𝑎1 and 𝑎2 are at a right angle, unlike the sharp angle of the base 2-atom cell. The
lattice properties are identical for the 2 and 4 atom cells, but the new geometry helps to create armchair edges.

model = pb.Model(
graphene.monolayer_4atom(),
pb.primitive(a1=5),
pb.translational_symmetry(a1=False, a2=True)

)
model.plot()
model.lattice.plot_vectors(position=[-0.59, -0.6])

46 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
y

(n
m

)

a1

a2

To calculate the band structure we must enter at least two points in k-space between which the energy will be
calculated. Note that because the periodicity is in the direction of the second lattice vector 𝑎2, the points in
k-space are given as [0, pi/d] instead of just pi/d (which would be equivalent to [pi/d, 0]).

solver = pb.solver.lapack(model)
d = 3 * graphene.a_cc # ribbon unit cell length
bands = solver.calc_bands([0, -pi/d], [0, pi/d])
bands.plot(point_labels=['$-\pi / 3 a_{cc}$', '$\pi / 3 a_{cc}$'])

/3acc /3acc

k-space

-10

-5

0

5

10

E
(e

V)

1D periodic supercell

Up to now, we used translational_symmetry() with True or False parameters to enable or disable
periodicity in certain directions. We can also pass a number to indicate the desired period length.

model = pb.Model(
graphene.monolayer_4atom(),
pb.rectangle(x=2, y=2),
pb.translational_symmetry(a1=1.2, a2=False)

)
model.plot()

8.5. Shape and symmetry 47

Pybinding User Guide, Release 0.9.4

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0
y

(n
m

)

The period length is given in nanometers. Note that our base shape is a square with 2 nm sides. The base shape
forms the supercell of the periodic structure, but because the period length (1.2 nm) is smaller than the shape (2
nm), the extra length is cut off by the periodic boundary.

If you specify a periodic length which is larger than the base shape, the periodic conditions will not be applied
because the periodic boundary will not have anything to bind to.

model = pb.Model(
graphene.monolayer_4atom(),
pb.rectangle(x=1.5, y=1.5), # don't combine a small shape
pb.translational_symmetry(a1=1.7, a2=False) # with large period length

)
model.plot()

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
(n

m
)

As you can see, making the period larger than the shape (1.7 nm vs. 1.5 nm), results in just the finite-sized part of
the system. Don’t do this.

The combination of shape and symmetry can be more complex as shown here with a nanoribbon ring structure.

def ring(inner_radius, outer_radius):
"""Ring shape defined by an inner and outer radius"""
def contains(x, y, z):

r = np.sqrt(x**2 + y**2)
return np.logical_and(inner_radius < r, r < outer_radius)

return pb.FreeformShape(contains, width=[2*outer_radius, 2*outer_radius])

model = pb.Model(
graphene.monolayer_4atom(),
ring(inner_radius=1.4, outer_radius=2),
pb.translational_symmetry(a1=3.8, a2=False)

)
plt.figure(figsize=[8, 3])
model.plot()

48 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-6 -4 -2 0 2 4 6
x (nm)

-2

-1

0

1

2

y
(n

m
)

The period length of the translation in the 𝑎1 direction is set to 3.8 nm. This ensures that the inner ring shape is
preserved and the periodic boundaries are placed on the outer edges.

solver = pb.solver.arpack(model, k=10) # only the 10 lowest states
a = 3.8 # [nm] unit cell length
bands = solver.calc_bands(-pi/a, pi/a)
bands.plot(point_labels=['$-\pi / a$', 'π / a'])

/a /a
k-space

-0.5

0.0

0.5

E
(e

V)

2D periodic supercell

A 2D periodic system made up of just a primitive cell was already covered in the Band structure section. Here,
we’ll create a system with a periodic unit cell which is larger than the primitive cell. Similar to the 1D case, this is
accomplished by giving translational_symmetry() specific lengths for the translation directions. As an
example, we’ll take a look at a graphene antidot superlattice:

width = 2.5
rectangle = pb.rectangle(x=width * 1.2, y=width * 1.2)
dot = pb.circle(radius=0.4)

model = pb.Model(
graphene.monolayer_4atom(),
rectangle - dot,
pb.translational_symmetry(a1=width, a2=width)

)
plt.figure(figsize=(5, 5))

8.5. Shape and symmetry 49

Pybinding User Guide, Release 0.9.4

model.plot()
model.lattice.plot_vectors(position=[2, -3.5], scale=3)

-4 -3 -2 -1 0 1 2 3 4
x (nm)

-4

-3

-2

-1

0

1

2

3

4

y
(n

m
)

a1

a2

The antidot unit cell is created using a composite shape. Note that the width of the rectangle is made
to be slightly larger than the period length. Just like the 1D case, this is necessary in order to give
translational_symmetry() some room to cut off the edges of the system and create periodic boundaries
as needed. If the unit cell size is smaller then the period length, translational symmetry cannot be applied.

In the figure above, notice that 6 translations of the unit cell are presented and it appears as if 2 are missing. This
is only in appearance. By default, Model.plot() shows just the first-nearest translations of the unit cell. It just
so happens that the 2 which appear missing are second-nearest translations. To see this in the figure, we can set
the num_periods argument to a higher value:

plt.figure(figsize=(5, 5))
model.plot(num_periods=2)

50 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-8 -6 -4 -2 0 2 4 6 8
x (nm)

-8

-6

-4

-2

0

2

4

6

8
y

(n
m

)

Example

Note the zero-energy mode in the band structure. For wave vector 𝑘 = 0, states on the outer edge of the ring have
the highest LDOS intensity, but for 𝑘 = 𝜋/𝑎 the inner edge states dominate.

"""Model an infinite nanoribbon consisting of graphene rings"""
import pybinding as pb
import numpy as np
import matplotlib.pyplot as plt
from pybinding.repository import graphene
from math import pi

pb.pltutils.use_style()

def ring(inner_radius, outer_radius):
"""A simple ring shape"""
def contains(x, y, z):

r = np.sqrt(x**2 + y**2)
return np.logical_and(inner_radius < r, r < outer_radius)

return pb.FreeformShape(contains, width=[2 * outer_radius, 2 * outer_radius])

model = pb.Model(
graphene.monolayer_4atom(),
ring(inner_radius=1.4, outer_radius=2), # length in nanometers
pb.translational_symmetry(a1=3.8, a2=False) # period in nanometers

)

plt.figure(figsize=pb.pltutils.cm2inch(20, 7))
model.plot()
plt.show()

8.5. Shape and symmetry 51

Pybinding User Guide, Release 0.9.4

-6 -4 -2 0 2 4 6
x (nm)

-2

-1

0

1

2
y

(n
m

)

only solve for the 10 lowest energy eigenvalues
solver = pb.solver.arpack(model, k=10)
a = 3.8 # [nm] unit cell length
bands = solver.calc_bands(-pi/a, pi/a)
bands.plot(point_labels=[r'$-\pi / a$', r'π / a'])
plt.show()

/a /a
k-space

-0.5

0.0

0.5

E
(e

V)

solver.set_wave_vector(k=0)
ldos = solver.calc_spatial_ldos(energy=0, broadening=0.01) # LDOS around 0 eV

plt.figure(figsize=pb.pltutils.cm2inch(20, 7))
ldos.plot(site_radius=(0.03, 0.12))
pb.pltutils.colorbar(label="LDOS")
plt.show()

52 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-6 -4 -2 0 2 4 6
x (nm)

-2

-1

0

1

2

y
(n

m
)

LDOS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

solver.set_wave_vector(k=pi/a)
ldos = solver.calc_spatial_ldos(energy=0, broadening=0.01) # LDOS around 0 eV

plt.figure(figsize=pb.pltutils.cm2inch(20, 7))
ldos.plot(site_radius=(0.03, 0.12))
pb.pltutils.colorbar(label="LDOS")
plt.show()

-6 -4 -2 0 2 4 6
x (nm)

-2

-1

0

1

2

y
(n

m
)

LDOS

0.0

0.5

1.0

1.5

2.0

2.5

Fields and effects

This section will introduce @onsite_energy_modifier and @hopping_energy_modifier which can
be used to add various fields to the model. These functions can apply user-defined modifications to the Hamiltonian
matrix which is why we shall refer to them as modifier functions.

Electric potential

We can define a simple potential function like the following:

@pb.onsite_energy_modifier
def potential(x, y):

return np.sin(x)**2 + np.cos(y)**2

Here potential is just a regular Python function, but we attached a pretty @ decorator to it. The
@onsite_energy_modifier decorator gives an ordinary function a few extra properties which we’ll talk

8.6. Fields and effects 53

Pybinding User Guide, Release 0.9.4

about later. For now, just keep in mind that this is required to mark a function as a modifier for use with pybinding
models. The x and y arguments are lattice site positions and the return value is the desired potential. Note the use
of np.sin instead of math.sin. The x and y coordinates are numpy arrays, not individual numbers. This is
true for all modifier arguments in pybinding. When you write modifier functions, make sure to always use numpy
operations which work with arrays, unlike regular math.

Note: Modifier arguments are passed as arrays for performance. Working with individual numbers would require
calling the potential function individually for each lattice site which would be extremely slow. Arrays are much
faster.

To use the potential function, just place it in a Model parameter list:

from pybinding.repository import graphene

model = pb.Model(
graphene.monolayer(),
pb.rectangle(12),
potential

)

To visualize the potential, there’s the handy Model.onsite_map property which is a StructureMap of the
onsite energy of the Hamiltonian matrix.

model.onsite_map.plot_contourf()
pb.pltutils.colorbar(label="U (eV)")

-4 -2 0 2 4
x (nm)

-4

-2

0

2

4

y
(n

m
)

U (eV)

0.002

0.206

0.410

0.613

0.817

1.021

1.225

1.428

1.632

1.836

The figure shows a 2D colormap representation of our wavy potential in a square system. The StructureMap.
plot_contourf() method we just called is implemented in terms of matplotlib’s contourf function with
some slight adjustments for convenience.

To make the potential more flexible, it’s a good idea to enclose it in an outer function, just like this:

def wavy(a, b):
@pb.onsite_energy_modifier
def potential(x, y):

return np.sin(a * x)**2 + np.cos(b * y)**2
return potential

model = pb.Model(
graphene.monolayer(),
pb.regular_polygon(num_sides=6, radius=8),
wavy(a=0.6, b=0.9)

)

54 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

model.onsite_map.plot_contourf()
pb.pltutils.colorbar(label="U (eV)")

-6 -4 -2 0 2 4 6
x (nm)

-6

-4

-2

0

2

4

6

y
(n

m
)

U (eV)

0.001

0.204

0.408

0.612

0.816

1.019

1.223

1.427

1.630

1.834

Note that we are using a system with hexagonal shape this time (via regular_polygon()). The potential is
only plotted inside the area of the actual system.

We can make one more improvement to our wavy function. We’ll add an energy argument:

def wavy2(a, b):
@pb.onsite_energy_modifier
def potential(energy, x, y):

v = np.sin(a * x)**2 + np.cos(b * y)**2
return energy + v

return potential

The energy argument contains the existing onsite energy in the system before the new potential function is
applied. By adding to the existing energy, instead of just setting it, we can compose multiple functions. For
example, let’s combine the improved wavy2 with a linear potential.

def linear(k):
@pb.onsite_energy_modifier
def potential(energy, x):

return energy + k*x
return potential

model = pb.Model(
graphene.monolayer(),
pb.regular_polygon(num_sides=6, radius=8),
wavy2(a=0.6, b=0.9),
linear(k=0.2)

)
model.onsite_map.plot_contourf()
pb.pltutils.colorbar(label="U (eV)")

8.6. Fields and effects 55

Pybinding User Guide, Release 0.9.4

-6 -4 -2 0 2 4 6
x (nm)

-6

-4

-2

0

2

4

6

y
(n

m
)

U (eV)

-0.817

-0.393

0.030

0.453

0.876

1.299

1.722

2.146

2.569

2.992

We see a similar wavy pattern as before, but the magnitude increases linearly along the x-axis because of the
contribution of the linear potential.

About the decorator

Now that you have a general idea of how to add and compose electric potentials in a model, we should talk about
the role of the @onsite_energy_modifier. The full signature of a potential function looks like this:

@pb.onsite_energy_modifier
def potential(energy, x, y, z, sub_id):

return ... # some function of the arguments

This function uses all of the possible arguments of an onsite energy modifier: energy, x, y, z and sub_id. We
have already explained the first three. The z argument is, obviously, the z-axis coordinate of the lattice sites. The
sub_id argument tells us which sublattice a site belongs to. Its usage will be explained below.

As we have seen before, we don’t actually need to define a function to take all the arguments. They are optional.
The @ decorator will recognize a function which takes any of these arguments and it will adapt it for use in a
pybinding model. Previously, the linear function accepted only the energy and x arguments, but wavy also
included the y argument. The order of arguments is not important, only their names are. Therefore, this is also a
valid modifier:

@pb.onsite_energy_modifier
def potential(x, y, energy, sub_id):

return ... # some function

But the argument names must be exact: a typo or an extra unknown argument will result in an error. The decorator
checks this at definition time and decides if the given function is a valid modifier or not, so any errors will be
caught early.

Opening a band gap

The last thing to explain about @onsite_energy_modifier is the use of the sub_id argument. It tells us
which sublattice a site belongs to. If you remember from early on in the tutorial, in the process of specifying a
lattice, we gave each sublattice a unique name. This name can be used to filter out sites of a specific sublattice.
For example, let’s add mass to electrons in graphene:

def mass_term(delta):
"""Break sublattice symmetry with opposite A and B onsite energy"""
@pb.onsite_energy_modifier
def potential(energy, sub_id):

56 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

energy[sub_id == 'A'] += delta
energy[sub_id == 'B'] -= delta
return energy

return potential

Note that we don’t need x, y or z arguments because this will be applied everywhere evenly. The mass_term
function will add an energy delta to all sites on sublattice A and subtract delta from all B sites. Note that
we are indexing the energy array with a condition on the sub_id array of the same length. This is a standard
numpy indexing technique which you should be familiar with.

The simplest way to demonstrate our new mass_term is with a graphene nanoribbon. First, let’s just remind
ourselves what a pristine zigzag nanoribbon looks like:

model = pb.Model(
graphene.monolayer(),
pb.rectangle(1.2),
pb.translational_symmetry(a1=True, a2=False)

)
model.plot()

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
(n

m
)

And let’s see its band structure:

from math import pi, sqrt

solver = pb.solver.lapack(model)
a = graphene.a_cc * sqrt(3)
bands = solver.calc_bands(-pi/a, pi/a)
bands.plot()

-4.1 4.1
k-space

-10

-5

0

5

10

E
(e

V)

8.6. Fields and effects 57

Pybinding User Guide, Release 0.9.4

Note that the bands touch at zero energy: there is not band gap. Now, let’s include the mass term and compute the
band structure again.

model = pb.Model(
graphene.monolayer(),
pb.rectangle(1.2),
pb.translational_symmetry(a1=True, a2=False),
mass_term(delta=2.5) # eV

)
solver = pb.solver.lapack(model)
bands = solver.calc_bands(-pi/a, pi/a)
bands.plot()

-4.1 4.1
k-space

-10

-5

0

5

10

E
(e

V)

We set a very high delta value of 2.5 eV for illustration purposes. Indeed, a band gap of 5 eV (delta * 2) is
quite clearly visible in the band structure.

PN junction

While we’re working with a nanoribbon, let’s add a PN junction along its main axis.

def pn_junction(y0, v1, v2):
@pb.onsite_energy_modifier
def potential(energy, y):

energy[y < y0] += v1
energy[y >= y0] += v2
return energy

return potential

The y0 argument is the position of the junction, while v1 and v2 are the values of the potential (in eV) before
and after the junction. Let’s add it to the nanoribbon:

model = pb.Model(
graphene.monolayer(),
pb.rectangle(1.2),
pb.translational_symmetry(a1=True, a2=False),
pn_junction(y0=0, v1=-5, v2=5)

)
model.onsite_map.plot(cmap="coolwarm", site_radius=0.04)
pb.pltutils.colorbar(label="U (eV)")

58 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
(n

m
)

U (eV)

-4

-2

0

2

4

Remember that the Model.onsite_map property is a StructureMap, which has several plotting methods.
A contour plot would not look at all good for such a small nanoribbon, but the method StructureMap.plot()
is perfect. As before, the ribbon has infinite length along the x-axis and the transparent sites represent the periodic
boundaries. The PN junction splits the ribbon in half along its main axis.

We can compute and plot the band structure:

solver = pb.solver.lapack(model)
bands = solver.calc_bands(-pi/a, pi/a)
bands.plot()

-4.1 4.1
k-space

-15

-10

-5

0

5

10

15

E
(e

V)

Next, let’s create a square potential well. We could define a new modifier function, as before. But lets take a
different approach and create the well by composing two PN junctions.

model = pb.Model(
graphene.monolayer(),
pb.rectangle(1.2),
pb.translational_symmetry(a1=True, a2=False),
pn_junction(y0=-0.2, v1=5, v2=0),
pn_junction(y0=0.2, v1=0, v2=5)

)
model.onsite_map.plot(cmap="coolwarm", site_radius=0.04)
pb.pltutils.colorbar(label="U (eV)")

8.6. Fields and effects 59

Pybinding User Guide, Release 0.9.4

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
(n

m
)

U (eV)

0

1

2

3

4

5

It works as expected. This can sometimes be a nice and quick way to extend a model. The square well affects the
band structure by breaking electron-hole symmetry:

solver = pb.solver.lapack(model)
bands = solver.calc_bands(-pi/a, pi/a)
bands.plot()

-4.1 4.1
k-space

-5

0

5

10

E
(e

V)

Magnetic field

To model a magnetic field, we need to apply the Peierls substitution:

𝑡𝑛𝑚 → 𝑡𝑛𝑚e𝑖
2𝜋
Φ0

∫︀ 𝑚
𝑛

�⃗�𝑛𝑚·𝑑𝑙

Here 𝑡𝑛𝑚 is the hopping energy between two sites, Φ0 = ℎ/𝑒 is the magnetic quantum, ℎ is the Planck constant
and �⃗�𝑛𝑚 is the magnetic vector potential along the path between sites 𝑛 and 𝑚. We want the magnetic field to be
perpendicular to the graphene plane, so we can take the gauge �⃗�(𝑥, 𝑦, 𝑧) = (𝐵𝑦, 0, 0).

This can all be expressed with a @hopping_energy_modifier:

from pybinding.constants import phi0

def constant_magnetic_field(B):
@pb.hopping_energy_modifier
def function(energy, x1, y1, x2, y2):

the midpoint between two sites
y = 0.5 * (y1 + y2)

60 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

scale from nanometers to meters
y *= 1e-9

vector potential along the x-axis
A_x = B * y

integral of (A * dl) from position 1 to position 2
peierls = A_x * (x1 - x2)
scale from nanometers to meters (because of x1 and x2)
peierls *= 1e-9

the Peierls substitution
return energy * np.exp(1j * 2*pi/phi0 * peierls)

return function

The energy argument is the existing hopping energy between two sites at coordinates (x1, y1) and (x2, y2).
The function computes and returns the Peierls substitution as given by the equation above.

The full signature of a @hopping_energy_modifier is actually:

@pb.hopping_energy_modifier
def function(energy, x1, y1, z1, x2, y2, z2, hop_id):

return ... # some function of the arguments

The hop_id argument tells us which type of hopping it is. Hopping types can be specifically named during the
creation of a lattice. This can be used to apply functions only to specific hoppings. However, as with all the
modifier arguments, it’s optional, so we only take what we need.

To test out our constant_magnetic_field, we’ll calculate the local density of states (LDOS), where we
expect to see peaks corresponding to Landau levels. The computation method used here is explained in detail in
the Kernel polynomial method section of the tutorial.

model = pb.Model(
graphene.monolayer(),
pb.rectangle(30),
constant_magnetic_field(B=200) # Tesla

)
kpm = pb.kpm(model)

ldos = kpm.calc_ldos(energy=np.linspace(-1, 1, 500), broadening=0.015, position=[0,
→˓ 0])
ldos.plot()
plt.show()

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
E (eV)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

LD
OS

The values of the magnetic field is exaggerated here (200 Tesla), but that is done to keep the computation time low

8.6. Fields and effects 61

Pybinding User Guide, Release 0.9.4

for the tutorial (less than 0.5 seconds for this LDOS calculation).

Further reading

Take a look at the Modifiers API reference for more information.

Example

"""PN junction and broken sublattice symmetry in a graphene nanoribbon"""
import pybinding as pb
import matplotlib.pyplot as plt
from pybinding.repository import graphene
from math import pi, sqrt

pb.pltutils.use_style()

def mass_term(delta):
"""Break sublattice symmetry with opposite A and B onsite energy"""
@pb.onsite_energy_modifier
def potential(energy, sub_id):

energy[sub_id == 'A'] += delta
energy[sub_id == 'B'] -= delta
return energy

return potential

def pn_juction(y0, v1, v2):
"""PN junction potential

The `y0` argument is the position of the junction, while `v1` and `v2`
are the values of the potential (in eV) before and after the junction.
"""
@pb.onsite_energy_modifier
def potential(energy, y):

energy[y < y0] += v1
energy[y >= y0] += v2
return energy

return potential

model = pb.Model(
graphene.monolayer(),
pb.rectangle(1.2), # width in nanometers
pb.translational_symmetry(a1=True, a2=False),
mass_term(delta=2.5), # eV
pn_juction(y0=0, v1=-2.5, v2=2.5) # y0 in [nm] and v1, v2 in [eV]

)
model.plot()
plt.show()

62 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
y

(n
m

)

plot the potential: note that pn_junction cancels out delta on some sites
model.onsite_map.plot(cmap="coolwarm", site_radius=0.04)
pb.pltutils.colorbar(label="U (eV)")
plt.show()

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
(n

m
)

U (eV)

-4

-2

0

2

4

compute the bands
solver = pb.solver.lapack(model)
a = graphene.a_cc * sqrt(3) # nanoribbon unit cell length
bands = solver.calc_bands(-pi/a, pi/a)
bands.plot()
plt.show()

-4.1 4.1
k-space

-15

-10

-5

0

5

10

15

E
(e

V)

8.6. Fields and effects 63

Pybinding User Guide, Release 0.9.4

Defects and strain

This section will introduce @site_state_modifier and @site_position_modifier which can be
used to add defects and strain to the model. These modifiers are applied to the structure of the system before the
Hamiltonian matrix is created.

Vacancies

A @site_state_modifier can be used to create vacancies in a crystal lattice. The definition is very similar
to the onsite and hopping modifiers explained in the previous section.

def vacancy(position, radius):
@pb.site_state_modifier
def modifier(state, x, y):

x0, y0 = position
state[(x-x0)**2 + (y-y0)**2 < radius**2] = False
return state

return modifier

The state argument indicates the current boolean state of a lattice site. Only valid sites (True state) will be
included in the final Hamiltonian matrix. Therefore, setting the state of sites within a small radius to False will
exclude them from the final system. The x and y arguments are lattice site positions. As with the other modifiers,
the arguments are optional (z is not needed for this example) but the full signature of the site state modifier can
be found on its API reference page.

This is actually very similar to the way a FreeformShape works. In fact, it is possible to create defects by
defining them directly in the shape. However, such an approach would not be very flexible since we would need to
create an entire new shape in order to change either the vacancy type or the shape itself. By defining the vacancy
as a modifier, we can simply compose it with any existing shapes:

from pybinding.repository import graphene

model = pb.Model(
graphene.monolayer(),
pb.rectangle(2),
vacancy(position=[0, 0], radius=0.1)

)
model.plot()

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

The resulting 2-atom vacancy is visible in the center of the system. The two vacant sites are completely removed
from the final Hamiltonian matrix. If we were to inspect the number of rows and columns by looking up model.
hamiltonian.shape, we would see that the size of the matrix is reduced by 2.

64 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

Any number of modifiers can be included in the model and they will compose as expected. We can take advantage
of this and create four different vacancies, with 1 to 4 missing atoms:

model = pb.Model(
graphene.monolayer(),
pb.rectangle(2),
vacancy(position=[-0.50, 0.50], radius=0.1),
vacancy(position=[0.50, 0.45], radius=0.15),
vacancy(position=[-0.45, -0.45], radius=0.15),
vacancy(position=[0.50, -0.50], radius=0.2),

)
model.plot()

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Layer defect

The site state modifier also has access to sublattice information. This can be used, for example, with bilayer
graphene to remove a single layer in a specific area. We’ll use the bilayer lattice that’s included in the Material
Repository. The graphene.bilayer() lattice is laid out so that sublattices A1 and B1 belong to the top layer,
while A2 and B2 are on the bottom.

def scrape_top_layer(position, radius):
"""Remove the top layer of graphene in the area specified by position and

→˓radius"""
@pb.site_state_modifier
def modifier(state, x, y, sub_id):

x0, y0 = position
is_within_radius = (x-x0)**2 + (y-y0)**2 < radius**2
is_top_layer = np.logical_or(sub_id == 'A1', sub_id == 'B1')
final_condition = np.logical_and(is_within_radius, is_top_layer)
state[final_condition] = False
return state

return modifier

model = pb.Model(
graphene.bilayer(),
pb.rectangle(2),
scrape_top_layer(position=[0, 0], radius=0.5)

)
model.plot()

8.7. Defects and strain 65

Pybinding User Guide, Release 0.9.4

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0
y

(n
m

)

The central monolayer area is nicely visible in the figure. We can actually create the same structure in a different
way: by considering the z position of the lattice site to distinguish the layers. An alternative modifier definition is
given below. It would generate the same figure. Which method is more convenient is up to the user.

def scrape_top_layer_alt(position, radius):
"""Alternative definition of `scrape_top_layer`"""
@pb.site_state_modifier
def modifier(state, x, y, z):

x0, y0 = position
is_within_radius = (x-x0)**2 + (y-y0)**2 < radius**2
is_top_layer = (z == 0)
final_condition = np.logical_and(is_within_radius, is_top_layer)
state[final_condition] = False
return state

return modifier

Note: As with the onsite and hopping modifiers, all the arguments are given as numpy arrays. Therefore, we
must use the array-specific np.logical_or()/ np.logical_and() functions instead of the plain or/and
keywords.

Strain

A @site_position_modifier can be used to model the lattice site displacement caused by strain. Let’s
start with a simple triangular system:

from math import pi

model = pb.Model(
graphene.monolayer(),
pb.regular_polygon(num_sides=3, radius=2, angle=pi),

)
model.plot()

66 Chapter 8. Tutorial

https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_or.html#numpy.logical_or
https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_and.html#numpy.logical_and

Pybinding User Guide, Release 0.9.4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0
y

(n
m

)

We’re going to apply strain in three directions, as if we are pulling outward on the vertices of the triangle. The
displacement function for this kind of strain is given below. The c parameter lets us control the intensity of the
strain.

def triaxial_displacement(c):
@pb.site_position_modifier
def displacement(x, y, z):

ux = 2*c * x*y
uy = c * (x**2 - y**2)
return x + ux, y + uy, z

return displacement

The modifier function takes the x, y, z coordinates as arguments. The displacement ux, uy is computed and the
modified coordinates are returned. The z argument is returned unchanged but we still need it here because the
modifier is expected to always return all three.

model = pb.Model(
graphene.monolayer(),
pb.regular_polygon(num_sides=3, radius=2, angle=pi),
triaxial_displacement(c=0.15)

)
model.plot()

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y
(n

m
)

As seen in the figure, the displacement has been applied to the lattice sites and the new position data is saved in the
system. However, the hopping energies have not been modified yet. Every hopping element of the Hamiltonian
matrix is equal to the hopping energy of pristine graphene:

8.7. Defects and strain 67

Pybinding User Guide, Release 0.9.4

>>> np.all(model.hamiltonian.data == -2.8)
True

We now need to use the new position data to modify the hopping energy according to the relation 𝑡 =

𝑡0𝑒
−𝛽(𝑑

𝑎𝑐𝑐
−1), where 𝑡0 is the original unstrained hopping energy, 𝛽 controls the strength of the strain-induced

hopping modulation, 𝑑 is the strained distance between two atoms and 𝑎𝑐𝑐 is the unstrained carbon-carbon dis-
tance. This can be implemented using a @hopping_energy_modifier:

@pb.hopping_energy_modifier
def strained_hopping(energy, x1, y1, z1, x2, y2, z2):

d = np.sqrt((x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2)
beta = 3.37
w = d / graphene.a_cc - 1
return energy * np.exp(-beta*w)

The structural modifiers (site state and position) are always automatically applied to the model before energy
modifiers (onsite and hopping). Thus, our strain_hopping modifier will get the new displaced coordinates
as its arguments, from which it will calculate the strained hopping energy.

model = pb.Model(
graphene.monolayer(),
pb.regular_polygon(num_sides=3, radius=2, angle=pi),
triaxial_displacement(c=0.15),
strained_hopping

)

Including the hopping modifier along with the displacement will yield position dependent hopping energy, thus
the elements of the Hamiltonian will no longer be all equal:

>>> np.all(model.hamiltonian.data == -2.8)
False

However, it isn’t convenient to keep track of the displacement and strained hoppings separately. Instead, we can
package them together in one function which is going to return both modifiers:

def triaxial_strain(c, beta=3.37):
"""Produce both the displacement and hopping energy modifier"""
@pb.site_position_modifier
def displacement(x, y, z):

ux = 2*c * x*y
uy = c * (x**2 - y**2)
return x + ux, y + uy, z

@pb.hopping_energy_modifier
def strained_hopping(energy, x1, y1, z1, x2, y2, z2):

l = np.sqrt((x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2)
w = l / graphene.a_cc - 1
return energy * np.exp(-beta*w)

return displacement, strained_hopping

The triaxial_strain function now has everything we need. We’ll apply it to a slightly larger system so that
we can clearly calculate the local density of states (LDOS). For more information about this computation method
see the Kernel polynomial method section. Right now, it’s enough to know that we will calculate the LDOS at the
center of the strained system, separately for sublattices A and B.

model = pb.Model(
graphene.monolayer(),
pb.regular_polygon(num_sides=3, radius=40, angle=pi),
triaxial_strain(c=0.0025)

)

68 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

kpm = pb.kpm(model)

for sub_name in ['A', 'B']:
ldos = kpm.calc_ldos(energy=np.linspace(-1, 1, 500), broadening=0.03,

position=[0, 0], sublattice=sub_name)
ldos.plot(label=sub_name, ls="--" if sub_name == "B" else "-")

pb.pltutils.legend()

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
E (eV)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

LD
OS

A
B

Strain in graphene has an effect similar to a magnetic field. That’s why we see Landau-level-like features in the
LDOS. Note that the zero-energy peak has double intensity on one sublattice but zero on the other: this is a unique
feature of the strain-induced pseudo-magnetic field.

Further reading

Take a look at the Modifiers API reference for more information.

Example

"""Strain a triangular system by pulling on its vertices"""
import pybinding as pb
import numpy as np
import matplotlib.pyplot as plt
from pybinding.repository import graphene
from math import pi

pb.pltutils.use_style()

def triaxial_strain(c):
"""Strain-induced displacement and hopping energy modification"""
@pb.site_position_modifier
def displacement(x, y, z):

ux = 2*c * x*y
uy = c * (x**2 - y**2)
return x + ux, y + uy, z

@pb.hopping_energy_modifier
def strained_hopping(energy, x1, y1, z1, x2, y2, z2):

l = np.sqrt((x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2)
w = l / graphene.a_cc - 1
return energy * np.exp(-3.37 * w)

8.7. Defects and strain 69

Pybinding User Guide, Release 0.9.4

return displacement, strained_hopping

model = pb.Model(
graphene.monolayer(),
pb.regular_polygon(num_sides=3, radius=2, angle=pi),
triaxial_strain(c=0.1)

)
model.plot()
plt.show()

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y
(n

m
)

plt.figure(figsize=(7, 2.5))
grid = plt.GridSpec(nrows=1, ncols=2)
for block, energy in zip(grid, [0, 0.25]):

plt.subplot(block)
plt.title("E = {} eV".format(energy))

solver = pb.solver.arpack(model, k=30, sigma=energy)
ldos_map = solver.calc_spatial_ldos(energy=energy, broadening=0.03)
ldos_map.plot()
pb.pltutils.colorbar(label="LDOS")

plt.show()

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y
(n

m
)

E = 0 eV LDOS

0

1

2

3

4

5

6

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y
(n

m
)

E = 0.25 eV LDOS

0.2

0.4

0.6

0.8

1.0

70 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

Eigenvalue solvers

Solvers were first introduced in the Band structure section and then used throughout the tutorial to present the re-
sults of the various models we constructed. This section will take a more detailed look at the concrete lapack()
and arpack() eigenvalue solvers and their common Solver interface.

LAPACK

The Solver class establishes the interface of a solver within pybinding, but it does not contain a concrete di-
agonalization routine. For this reason we never instantiate the plain solver, only its implementations such as
solver.lapack().

The LAPACK implementation works on dense matrices which makes it well suited only for small systems. How-
ever, a great advantage of this solver is that it always solves for all eigenvalues and eigenvectors of a Hamiltonian
matrix. This makes it perfect for calculating the entire band structure of the bulk or nanoribbons, as has been
shown several times in this tutorial.

Internally, this solver uses the scipy.linalg.eigh() function for dense Hermitian matrices. See the
solver.lapack() API reference for more details.

ARPACK

The solver.arpack() implementation works on sparse matrices which makes it suitable for large systems.
However, only a small subset of the total eigenvalues and eigenvectors can be calculated. This tutorial already
contains a few examples where the ARPACK solver was used, and one more is presented below.

Internally, the scipy.sparse.linalg.eigsh() function is used to solve large sparse Hermitian matrices.
The first argument to solver.arpack() must be the pybinding Model, but the following arguments are the
same as eigsh(), so the solver routine can be tweaked as desired. Rather than reproduce the full list of options
here, we refer you to the scipy eigsh() reference documentation. Here, we will focus on the specific features
of solvers within pybinding.

Solver interface

No matter which concrete solver is used, they all share a common Solver interface. The two primary prop-
erties are eigenvalues and eigenvectors. These are the raw results of the exact diagonalization of the
Hamiltonian matrix.

>>> from pybinding.repository import graphene
>>> model = pb.Model(graphene.monolayer())
>>> model.hamiltonian.todense()
[[0.0 -2.8]
[-2.8 0.0]]

>>> solver = pb.solver.lapack(model)
>>> solver.eigenvalues
[-2.8 2.8]
>>> solver.eigenvectors
[[-0.707 -0.707]
[-0.707 0.707]]

The properties contain just the raw data. However, Solver also offers a few convenient calculation methods.
We’ll demonstrate these on a simple rectangular graphene system.

from pybinding.repository import graphene

model = pb.Model(
graphene.monolayer(),
pb.rectangle(x=3, y=1.2)

8.8. Eigenvalue solvers 71

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html#scipy.linalg.eigh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh

Pybinding User Guide, Release 0.9.4

)
model.plot()

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

y
(n

m
)

First, we’ll take a look at the calc_eigenvalues() method. While its job is essentially the same as the
eigenvalues property, there is one key difference: the property returns a raw array, while the method returns
an Eigenvalues result object. These objects have convenient functions built in and they know how to plot their
data:

solver = pb.solver.arpack(model, k=20) # for the 20 lowest energy eigenvalues
eigenvalues = solver.calc_eigenvalues()
eigenvalues.plot()

0 5 10 15 20
state

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

E
(e

V)

The basic plot just shows the state number and energy of each eigenstate, but we can also do something
more interesting. If we pass a position argument to calc_eigenvalues() it will calculate the proba-
bility density |Ψ(�⃗�)|2 at that position for each eigenstate and we can view the result using Eigenvalues.
plot_heatmap():

eigenvalues = solver.calc_eigenvalues(map_probability_at=[0.1, 0.6]) # position
→˓in [nm]
eigenvalues.plot_heatmap(show_indices=True)
pb.pltutils.colorbar()

72 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

0 5 10 15 20
state

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

E
(e

V)

0 1 2
3

4

5

6

7
8 9 10 11

12

13

14

15
16

17 18 19

1

2

3

4

5

6

7
1e-2

In this case we are interested in the probability density at [x, y] = [0.1, 0.6], i.e. a lattice site at the
top zigzag edge of our system. Note that the given position does not need to be precise: the probability will be
computed for the site closest to the given coordinates. From the figure we can see that the probability at the edge
is highest for the two zero-energy states: numbers 9 and 10. We can take a look at the spatial map of state 9 using
the calc_probability() method:

probability_map = solver.calc_probability(9)
probability_map.plot()

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

y
(n

m
)

The result object in this case is a StructureMap with the probability density |Ψ(�⃗�)|2 as its data attribute. As
expected, the most prominent states are at the zigzag edges of the system.

An alternative way to get a spatial map of the system is via the local density of states (LDOS). The
calc_spatial_ldos() method makes this easy. The LDOS map is requested for a specific energy value
instead of a state number and it considers multiple states within a Gaussian function with the specified broaden-
ing:

ldos_map = solver.calc_spatial_ldos(energy=0, broadening=0.05) # [eV]
ldos_map.plot()

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

y
(n

m
)

The total density of states can be calculated with calc_dos():

dos = solver.calc_dos(energies=np.linspace(-1, 1, 200), broadening=0.05) # [eV]
dos.plot()

8.8. Eigenvalue solvers 73

Pybinding User Guide, Release 0.9.4

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
E (eV)

0

5

10

15

20

25

30
DO

S

Our example system is quite small so the DOS does not resemble bulk graphene. The zero-energy peak stands
out as the signature of the zigzag edge states. For periodic systems, the wave vector can be controlled using
Solver.set_wave_vector(). This allows us to compute the eigenvalues at various points in k-space. For
example:

from math import pi

model = pb.Model(
graphene.monolayer(),
pb.translational_symmetry()

)
solver = pb.solver.lapack(model)

kx_lim = pi / graphene.a
kx_path = np.linspace(-kx_lim, kx_lim, 100)
ky_outer = 0
ky_inner = 2*pi / (3*graphene.a_cc)

outer_bands = []
for kx in kx_path:

solver.set_wave_vector([kx, ky_outer])
outer_bands.append(solver.eigenvalues)

inner_bands = []
for kx in kx_path:

solver.set_wave_vector([kx, ky_inner])
inner_bands.append(solver.eigenvalues)

for bands in [outer_bands, inner_bands]:
result = pb.results.Bands(kx_path, bands)
result.plot()

74 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-4.1 4.1
k-space

-5

0

5

E
(e

V)

This example shows the basic principle of iterating over a path in k-space in order to calculate the band structure.
However, this is made much easier with the Solver.calc_bands() method. This was already covered in the
Band structure section and will not be repeated here. But keep in mind that this calculation does not need to be
done manually, Solver.calc_bands() is the preferred way.

Further reading

Take a look at the solver and results reference pages for more detailed information. More solver examples
are available throughout this tutorial.

Kernel polynomial method

The kernel polynomial method (KPM) can be used to quickly compute various physical properties of very large
tight-binding systems. It makes use of Chebyshev polynomial expansion together with damping kernels. Pybind-
ing includes a fast kpm() implementation with several easy-to-use computation methods as well as a low-level
interface for computing KPM expansion moments.

About KPM

For a full review of the kernel polynomial method, see the reference paper Rev. Mod. Phys. 78, 275 (2006).
Here, we shall only briefly describe the main characteristics of KPM and some specifics of its implementation in
pybinding.

As we saw on the previous page, exactly solving a tight-binding problem implies the diagonalization of the Hamil-
tonian matrix. However, the computational resources required by eigenvalue solvers scale up rapidly with system
size which makes it challenging to solve realistically large systems. A fundamentally different approach is to set
aside the requirement for exact solutions (avoid diagonalization altogether) and instead use approximative meth-
ods to calculate the properties of interest. This is the main idea behind KPM which approximates functions as a
series of Chebyshev polynomials.

The approximative nature of the method presents an opportunity for additional performance tuning. Results may
be computed very quickly with low accuracy to get an initial estimate for the problem at hand. Once final results
are required, the accuracy can be increased at the cost of longer computation time. Within pybinding, this KPM
calculation quality is frequently expressed as an energy broadening parameter.

One of the great benefits of this method is that spatially dependent properties such as the local density of states
(LDOS) or Green’s function are calculated separately for each spatial position. This means that localized prop-
erties can be computed extremely quickly. For this application, KPM can be seen as orthogonal to traditional
eigenvalue solvers. Sparse diagonalization produces results for a very small energy range (eigenvalues) but does
so for all positions simultaneously (eigenvectors). With KPM, it’s possible to separate and compute individual

8.9. Kernel polynomial method 75

https://doi.org/10.1103/RevModPhys.78.275

Pybinding User Guide, Release 0.9.4

positions but for the entire energy spectrum at once. In this way, the two approaches complement each other
nicely.

Builtin methods

Before using any of the computation methods, the main KPM object needs to be created for a specific model:

model = pb.Model(...)
kpm = pb.kpm(model)
... use kpm

LDOS

The KPM.calc_ldos() method makes it very easy to calculate the local density of states (LDOS). In the next
example we’ll use a large square sheet of pristine graphene:

from pybinding.repository import graphene

model = pb.Model(graphene.monolayer(), pb.rectangle(60, 60))
kpm = pb.kpm(model)

ldos = kpm.calc_ldos(energy=np.linspace(-9, 9, 200), broadening=0.05, position=[0,
→˓0])
ldos.plot()

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5
E (eV)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

LD
OS

The LDOS is calculated for energies between -9 and 9 eV with a Gaussian broadening of 50 meV. Since this is the
local density of states, position is also a required argument. We target the center of our square system where we
expect to see the well-known LDOS shape of pristine graphene.

Thanks to KPM, the calculation of this local property is very fast: about 0.1 seconds for the example above
with a 60 x 60 nm sheet of graphene. The broadening parameter offers the possibility for performance tuning
– calculation time is inversely proportional to broadening width. KPM performs the computation for the entire
spectrum simultaneously, so the selected energy range and the number of sample points have almost no effect on
performance. The broadening width (i.e. the precision of the results) is the main factor which determines the
duration of the calculation.

The result of the calculation is a Series object which contains the LDOS data, the energy array for which it
was calculated, and the associated data labels. This allows the Series.plot() method to automatically plot
a nicely labeled line plot, as seen above. Accessing the raw data represented on the y-axis is possible via the
Series.data attribute, i.e. ldos.data in this specific case.

76 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

Tight-binding systems have lattice sites at discrete positions, which in principle means that we cannot freely
choose just any position for LDOS calculations. However, as a convenience the KPM.calc_ldos() method
will automatically find a valid site closest to the given target position. We can optionally also choose a specific
sublattice:

ldos = kpm.calc_ldos(energy=np.linspace(-9, 9, 200), broadening=0.05,
position=[0, 0], sublattice="B")

In this case we would calculate the LDOS at a site of sublattice B closest to the center of the system. We can try
that on a graphene system with a mass term:

model = pb.Model(
graphene.monolayer(),
graphene.mass_term(1),
pb.rectangle(60)

)
kpm = pb.kpm(model)

for sub_name in ["A", "B"]:
ldos = kpm.calc_ldos(energy=np.linspace(-9, 9, 500), broadening=0.05,

position=[0, 0], sublattice=sub_name)
ldos.plot(label=sub_name)

pb.pltutils.legend()

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5
E (eV)

0.00

0.05

0.10

0.15

0.20

0.25

LD
OS

A
B

Multiple plots compose nicely here. A large band gap is visible at zero energy due to the inclusion of graphene.
mass_term(). It places an onsite potential with the opposite sign in each sublattice. This is also why the LDOS
lines for A and B sublattices are antisymmetric around zero energy with respect to one another.

DOS

The following example demonstates the usage of the KPM.calc_dos() method which computes the total den-
sity of states (DOS) in a system:

model = pb.Model(graphene.monolayer(), pb.rectangle(400, 2))
kpm = pb.kpm(model)

dos = kpm.calc_dos(energy=np.linspace(-2.7, 2.7, 500), broadening=0.06, num_
→˓random=16)
dos.plot()

8.9. Kernel polynomial method 77

Pybinding User Guide, Release 0.9.4

-2 -1 0 1 2
E (eV)

0

1000

2000

3000

4000

5000

6000
DO

S

The example system here is a very long but narrow (400 x 2 nm) rectangle of graphene, i.e. a zigzag nanoribbon
of finite length. The pronounced zero-energy peak is due to zigzag edge states and the additional higher-energy
DOS peaks reflect the quantized band structure of the narrow nanoribbon.

A specific feature of the KPM-based DOS calculation is that it can be approximated very quickly using stochastic
methods. Instead of computing the density of states at each sites individually and summing up the results, the DOS
is calculated for all sites at the same time, but with a random contribution of each site. By repeating this procedure
multiple times with different random staring states, the full DOS is recovered. This presents an additional knob
for performance/quality tuning via the num_random parameter.

For this example, we keep num_random low to keep the calculation time under 1 second. Increasing this number
would smooth out the DOS further. Luckily, the stochastic evaluation converges as a function of both the system
size and number of random samples. Thus, the larger the model system, the smaller num_random needs to be
for the same result quality.

Spatial LDOS

To see the spatial distribution of the density of states, we could call the KPM.calc_ldos() method for several
positions and populate a SpatialMap. However, this would be tedious and slow, so instead we have KPM.
calc_spatial_ldos() which makes this much simpler. Let’s use a strained bit of graphene as an example:

def gaussian_bump_strain(height, sigma):
"""Out-of-plane deformation (bump)"""
@pb.site_position_modifier
def displacement(x, y, z):

dz = height * np.exp(-(x**2 + y**2) / sigma**2) # gaussian
return x, y, z + dz # only the height changes

@pb.hopping_energy_modifier
def strained_hoppings(energy, x1, y1, z1, x2, y2, z2):

d = np.sqrt((x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2) # strained neighbor
→˓distance

return energy * np.exp(-3.37 * (d / graphene.a_cc - 1)) # see strain
→˓section

return displacement, strained_hoppings

model = pb.Model(graphene.monolayer().with_offset([-graphene.a / 2, 0]),
pb.regular_polygon(num_sides=6, radius=4.5),
gaussian_bump_strain(height=1.6, sigma=1.6))

plt.figure(figsize=(6.7, 2.2))
plt.subplot(121, title="xy-plane", ylim=[-5, 5])
model.plot()

78 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

plt.subplot(122, title="xz-plane")
model.plot(axes="xz")

-4 -3 -2 -1 0 1 2 3 4
x (nm)

-4

-2

0

2

4

y
(n

m
)

xy-plane

-4 -3 -2 -1 0 1 2 3 4
x (nm)

-0.5
0.0
0.5
1.0
1.5
2.0

z (
nm

)

xz-plane

The bump produces purely out-of-plane strain so the xy-plane does not show any signs of the deformation. Switch-
ing to the xz-plane reveals the bump.

The KPM.calc_spatial_ldos() method takes the same energy and broadening arguments as we’ve
seen before. KPM computes the entire spectrum simultaneously, so it’s practically “free” to compute the spatial
LDOS at multiple energy values in one calculation (this is in contrast to Solver.calc_spatial_ldos()
which only targets a single energy).

The shape argument specifies the area where the LDOS is to be calculated, i.e. the sites which are contained
within the given shape. We could just specify the same shape as the model, thus taking all sites into consideration,
but the calculation is faster for smaller areas so we’ll narrow our focus. Our model shape is hexagonal, but we’re
only interested in the LDOS at the bump so we can look at a smaller circular area:

kpm = pb.kpm(model)
spatial_ldos = kpm.calc_spatial_ldos(energy=np.linspace(-3, 3, 100), broadening=0.
→˓2, # eV

shape=pb.circle(radius=2.8)) # only within
→˓the shape
plt.figure(figsize=(6.7, 6))
gridspec = plt.GridSpec(2, 2, height_ratios=[1, 0.3], hspace=0)

energies = [0.0, 0.75, 0.0, 0.75] # eV
planes = ["xy", "xy", "xz", "xz"]

for g, energy, axes in zip(gridspec, energies, planes):
plt.subplot(g, title="E = {} eV, {}-plane".format(energy, axes))
smap = spatial_ldos.structure_map(energy)
smap.plot(site_radius=(0.02, 0.15), axes=axes)

8.9. Kernel polynomial method 79

Pybinding User Guide, Release 0.9.4

-3 -2 -1 0 1 2 3
x (nm)

-3

-2

-1

0

1

2

3

y
(n

m
)

E = 0.0 eV, xy-plane

-3 -2 -1 0 1 2 3
x (nm)

-3

-2

-1

0

1

2

3

y
(n

m
)

E = 0.75 eV, xy-plane

-3 -2 -1 0 1 2 3
x (nm)

0

1

2

z (
nm

)

E = 0.0 eV, xz-plane

-3 -2 -1 0 1 2 3
x (nm)

0

1

2

z (
nm

)
E = 0.75 eV, xz-plane

The result of the calculation is a SpatialLDOS object which stores the spatial LDOS for several energy values.
Calling SpatialLDOS.structure_map() selects a specific energy.

Green’s function

The KPM.calc_greens() can then be used to calculate Green’s function corresponding to Hamiltonian matrix
element i,j for the desired energy range and broadening:

g_ij = kpm.calc_greens(i, j, energy=np.linspace(-9, 9, 100), broadening=0.1)

The result is raw Green’s function data for the given matrix element.

Conductivity

The KPM.calc_conductivity() method computes the conductivity as a function of chemical potential.
The implementation uses the Kubo-Bastin formula expanded in terms of Chebyshev polynomials, as described
in https://doi.org/10.1103/PhysRevLett.114.116602. The following example calculates the conductivity tensor for
the quantum Hall effect in graphene with a magnetic field:

width = 40 # nanometers
model = pb.Model(

graphene.monolayer(), pb.rectangle(width, width),
graphene.constant_magnetic_field(magnitude=1500) # exaggerated field strength

)

The conductivity calculation is based on Green's function
for which the Lorentz kernel produces better results.
kpm = pb.chebyshev.kpm(model, kernel=pb.lorentz_kernel())

directions = {

80 Chapter 8. Tutorial

https://doi.org/10.1103/PhysRevLett.114.116602

Pybinding User Guide, Release 0.9.4

r"σ_{xx}": "xx", # longitudinal conductivity
r"σ_{xy}": "xy", # off-diagonal (Hall) conductivity

}
for name, direction in directions.items():

sigma = kpm.calc_conductivity(chemical_potential=np.linspace(-1.5, 1.5, 300),
broadening=0.1, direction=direction,

→˓temperature=0,
volume=width**2, num_random=10)

sigma.data *= 4 # to account for spin and valley degeneracy
sigma.plot(label=name)

pb.pltutils.legend()

Note: The calculation above takes about a minute to complete. Please take note of that if you’ve downloaded
this page as a Jupyter notebook and are executing the code on your own computer. If you’re viewing this online,
you’ll notice that the result figure is not shown. This is because all of the figures in pybinding’s documentation
are generated automatically by readthedocs.org (RTD) from the example code (not when you load the webpage,
but when a new documentation revision is uploaded). RTD has a documentation build limit of 15 minutes so all of
the example code presented on these pages is kept short and fast, preferably under 1 second for each snippet. The
long runtime of this conductivity calculation forces us to skip it in order to conserve documentation build time.

You can execute this code on your own computer to see the results. The parameters here have been tuned in order to
take the minimal amount of time while still showing the desired effect. However, that is not the most aesthetically
pleasing result. To improve the quality of the resulting figure, you can increase the size of the system, reduce the
magnetic field strength, reduce the broadening and increase the number of random vectors. That could extend the
computation time from a few minutes to several hours.

Damping kernels

KPM approximates a function as a series of Chebyshev polynomials. This series is infinite, but numerical calcu-
lations must end at some point, thus taking into account only a finite number of terms. This truncation results in
a loss of precision and high frequency oscillations in the computed function. In order to damp these fluctuations,
the function can be convolved with various damping kernels (the K in KPM).

Pybinding offers three option: jackson_kernel(), lorentz_kernel() and dirichlet_kernel().
The Jackson kernel is enabled by default and it is the best choice for most applications. The following example
compares the three kernels:

plt.figure(figsize=(6.7, 2.8))
model = pb.Model(graphene.monolayer(), pb.circle(30),

graphene.constant_magnetic_field(400))

plt.subplot(121, title="Damping kernels")
kernels = {"Jackson (default)": pb.jackson_kernel(),

"Lorentz": pb.lorentz_kernel()}
for name, kernel in kernels.items():

kpm = pb.kpm(model, kernel=kernel)
ldos = kpm.calc_ldos(np.linspace(-1.5, 1.5, 500), broadening=0.05, position=[0,

→˓ 0])
ldos.plot(label=name, ls="--" if name == "Lorentz" else "-")

pb.pltutils.legend()

plt.subplot(122, title="Undamped")
kpm = pb.kpm(model, kernel=pb.dirichlet_kernel())
ldos = kpm.calc_ldos(np.linspace(-1.5, 1.5, 500), broadening=0.05, position=[0, 0])
ldos.plot(label="Dirichlet", color="C2")
pb.pltutils.legend()

8.9. Kernel polynomial method 81

Pybinding User Guide, Release 0.9.4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
E (eV)

0.00

0.01

0.02

0.03

0.04

0.05
LD

OS
Damping kernels

Jackson (default)
Lorentz

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
E (eV)

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

LD
OS

Undamped

Dirichlet

Computing the LDOS in graphene with a magnetic field reveals several peaks which correspond to Landau levels.
The Jackson kernel produces the best results. The broadening argument of the calculation was set to 50 meV.
With the Jackson kernel, the LDOS appears as if it was convolved with a Gaussian of that width. On the other
hand, the Lorentz kernel applies an effective Lorentzian broadening of the same 50 meV but produces poorer
results (not as sharp) simply due to the difference in slopes of the Gaussian and Lorentzian curves.

Lastly, there is the Dirichlet kernel. It essentially doesn’t apply any damping and represent the raw result of the
truncated Chebyshev series. Note that the Landau levels are still present, but there are also lots of extra oscillations
(noise). The Dirichlet kernel is here mainly for demonstration purposes and is rarely useful.

Out of the two proper kernels, Jackson is the default and appropriate for most applications. The Lorentz kernels
is mostly suited for Green’s function (and thus also conductivity) or in cases where the extra smoothing of the
Lorentzian may be preferable (sometimes purely aesthetically).

Low-level interface

The KPM-based calculation methods presented so far have been user-friendly and aimed at computing a single
physical property of a model. Pybinding also offers a low-level KPM interface via the KPM.moments()method.
It can be used to generally compute KPM expansion moments of the form 𝜇𝑛 =< 𝛽|𝑜𝑝 · 𝑇𝑛(𝐻)|𝛼 >. For more
information on how to use these moments to reconstruct various functions, see Rev. Mod. Phys. 78, 275 (2006)
which explains everything in great detail.

We’ll just leave a quick example here. The following code calculates the LDOS in the center of a rectangular
graphene flake. This is exactly like the first example in the LDOS section above, except that we are using the low-
level interface. There is no special advantage to doing this calculation manually (in fact, the high-level method is
faster). This is here simply for demonstration. The intended usage of the low-level interface is to create KPM-
based computation methods which are not already covered by the builtins described above.

model = pb.Model(graphene.monolayer(), pb.rectangle(60, 60))
kpm = pb.kpm(model, kernel=pb.jackson_kernel())

Construct a unit vector which is equal to 1 at the position
where we want to calculate the local density of states
idx = model.system.find_nearest(position=[0, 0], sublattice="A")
alpha = np.zeros(model.hamiltonian.shape[0])
alpha[idx] = 1

The broadening and the kernel determine the needed number of moments
a, b = kpm.scaling_factors
broadening = 0.05 # (eV)
num_moments = kpm.kernel.required_num_moments(broadening / a)

Main calculation

82 Chapter 8. Tutorial

https://doi.org/10.1103/RevModPhys.78.275

Pybinding User Guide, Release 0.9.4

moments = kpm.moments(num_moments, alpha) # optionally also takes beta and an
→˓operator

Reconstruct the LDOS function
energy = np.linspace(-8.42, 8.42, 200)
scaled_energy = (energy - b) / a
ns = np.arange(num_moments)
k = 2 / (a * np.pi * np.sqrt(1 - scaled_energy**2))
chebyshev = np.cos(ns * np.arccos(scaled_energy[:, np.newaxis]))
ldos = k * np.sum(moments.real * chebyshev, axis=1)

plt.plot(energy, ldos)
plt.xlabel("E (eV)")
plt.ylabel("LDOS")
pb.pltutils.despine()

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
E (eV)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

LD
OS

Further reading

For an additional examples see the Magnetic field subsection of Fields and effects as well as the Strain modifier
subsection of Defects and strain. The reference page for the chebyshev submodule contains more information.

Scattering model

This section introduces the ability to attach semi-infinite leads to a finite-sized central region, thereby creating a
scattering model.

Attaching leads

To start with, we need a finite-sized system to serve as the central scattering region. We’ll just make a simple ring.
Refer to the Finite size section for more details.

from pybinding.repository import graphene

def ring(inner_radius, outer_radius):
"""A simple ring shape"""
def contains(x, y, z):

r = np.sqrt(x**2 + y**2)
return np.logical_and(inner_radius < r, r < outer_radius)

return pb.FreeformShape(contains, width=[2*outer_radius, 2*outer_radius])

8.10. Scattering model 83

Pybinding User Guide, Release 0.9.4

model = pb.Model(graphene.monolayer(), ring(0.8, 2))
model.plot()

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

y
(n

m
)

To attach a lead to this system, we call the Model.attach_lead() method:

model.attach_lead(direction=-1, contact=pb.line([-2, -1], [-2, 1]))

plt.figure(figsize=(6, 3)) # make the figure wider
model.plot()

-5 -4 -3 -2 -1 0 1 2
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

y
(n

m
)

lead 0

The lead is semi-infinite, but to be practical for the figure, only a few repetitions of the lead’s unit cell are drawn.
They fade out gradually along the direction where the lead goes to infinity. The periodic hoppings between the unit
cells are shown in red. The label indicates that this lead has the index 0. It’s attributes can be accessed using this
index and the Model.leads list. The lead was created using two parameters: direction and the contact
shape. To illustrate the meaning of these parameters, we’ll draw them using the Lead.plot_contact()
method:

plt.figure(figsize=(6, 3)) # make the figure wider
model.plot()
model.leads[0].plot_contact() # red shaded area and arrow
model.lattice.plot_vectors(position=[-2.5, 1.5], scale=3)

84 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-5 -4 -3 -2 -1 0 1 2
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
y

(n
m

)

lead 0 a1

a1

a2

The direction of a lead is specified in terms of lattice vectors. In this case direction=-1 indicates that it should
be opposite the 𝑎1 lattice vector, as shown in the figure with the arrow labeled −𝑎1. For 2D systems, the allowed
directions are ±1,±2. The position of the lead is chosen by specifying a contact shape. The intersection of a
semi-infinite lead and a 2D system is a 1D line, which is why we specified contact=pb.line([-2, -1],
[-2, 1]), where the two parameters given to line() are point positions. The line is drawn in the figure above
in the middle of the red shaded area (the red area itself does not have any physical meaning, it’s just there to draw
attention to the line).

Note: For a 3D system, the lead contact area would be 2D shape, which could be specified by a Polygon or a
FreeformShape.

We can now proceed to attach a few more leads:

model.attach_lead(direction=+2, contact=pb.line([-1, 1.8], [1, 1.8]))
model.attach_lead(direction=+1, contact=pb.line([2, -1], [2, 1]))
model.attach_lead(direction=-2, contact=pb.line([-1, -1.8], [1, -1.8]))

plt.figure(figsize=(6.9, 6))
model.plot()
model.leads[1].plot_contact()
model.leads[2].plot_contact()
model.lattice.plot_vectors(position=[-2, 2], scale=3)

8.10. Scattering model 85

Pybinding User Guide, Release 0.9.4

-6 -4 -2 0 2 4 6
x (nm)

-4

-3

-2

-1

0

1

2

3

4
y

(n
m

)

lead 0

lead 1

lead 2

lead 3

a2

a1

a1
a2

Notice that leads 1 and 3 are not perpendicular to leads 0 and 2. This is due to the angle of the primitive lattice
vectors 𝑎1 and 𝑎2, as shown in the same figure. All of the leads also have zigzag edges because of this primitive
vector arrangement. If we substitute the regular graphene lattice with graphene.monolayer_4atom(), the
primitive vectors will be perpendicular and we’ll get different leads in the ±2 directions:

model = pb.Model(graphene.monolayer_4atom(), ring(0.8, 2))
model.attach_lead(direction=+2, contact=pb.line([-1, 1.8], [1, 1.8]))
model.attach_lead(direction=+1, contact=pb.line([2, -1], [2, 1]))
model.plot()
model.lattice.plot_vectors(position=[2, 2], scale=3)

-2 -1 0 1 2 3 4
x (nm)

-2

-1

0

1

2

3

4

5

y
(n

m
)

lead 0

lead 1

a1

a2

Lead attributes

The attached leads can be accessed using the Model.leads list. Each entry is a Lead object with a few useful
attributes. The unit cell of a lead is described by the Hamiltonian Lead.h0. It’s a sparse matrix, just like the
Model.hamiltonian of finite-sized main system. The hoppings between unit cell of the lead are described
by the Lead.h1 matrix. See the Lead API page for more details.

86 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

Each lead also has a Lead.plot_bands() method which can be used to quickly view the band structure of an
isolated lead. For the last model which was constructed and shown in the figure above, the band plots of the leads
are:

plt.figure(figsize=(6.7, 3))
plt.subplot('121')
model.leads[0].plot_bands()
plt.subplot('122')
model.leads[1].plot_bands()

-
k-space

-10

-5

0

5

10

E
(e

V)

lead 0

-
k-space

-10

-5

0

5

10

E
(e

V)

lead 1

This is expected as lead 0 has armchair edges, while lead 1 has zigzag edges.

Fields in the leads

There is no need to specifically apply a field to a lead. Fields (and all modifier functions) are always applied
globally to both the main system and all leads. For example, we can define a PN junction at 𝑥0 = 0 and pass it to
the model:

def pn_junction(x0, v1, v2):
@pb.onsite_energy_modifier
def potential(energy, x):

energy[x < x0] += v1
energy[x >= x0] += v2
return energy

return potential

model = pb.Model(
graphene.monolayer_4atom(),
ring(0.8, 2),
pn_junction(x0=0, v1=-1, v2=1)

)
model.attach_lead(direction=-1, contact=pb.line([-2, -1], [-2, 1]))
model.attach_lead(direction=+1, contact=pb.line([2, -1], [2, 1]))
model.plot()

8.10. Scattering model 87

Pybinding User Guide, Release 0.9.4

-4 -3 -2 -1 0 1 2 3 4
x (nm)

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

y
(n

m
)

lead 0 lead 1

We can view the potential applied to the main system using the Model.onsite_map property.

model.onsite_map.plot(cmap="coolwarm", site_radius=0.06)
pb.pltutils.colorbar(label="U (eV)")

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

y
(n

m
)

U (eV)

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

The appropriate potential is automatically applied to the leads depending on their position, left or right of the PN
junction. We can quickly check this by plotting the band structure:

plt.figure(figsize=(6.7, 3))
plt.subplot('121')
model.leads[0].plot_bands()
plt.ylim(-10, 10)
plt.subplot('122')
model.leads[1].plot_bands()
plt.ylim(-10, 10)

88 Chapter 8. Tutorial

Pybinding User Guide, Release 0.9.4

-
k-space

-10

-5

0

5

E
(e

V)
lead 0

-
k-space

-5

0

5

10

E
(e

V)

lead 1

The leads are identical, except for a ±1 eV shift due to the PN junction, as expected.

Solving a scattering problem

At this time, pybinding doesn’t have a builtin solver for scattering problems. However, they can be solved using
Kwant. An arbitrary model can be constructed in pybinding and then exported using the Model.tokwant()
method. See the Kwant compatibility page for details.

Alternatively, any user-defined solver and/or computation routine can be used. Pybinding generates the model
information in a standard CSR matrix format. The required Hamiltonian matrices are Model.hamiltonian
for the main scattering region and Lead.h0 and Lead.h1 for each of the leads found in Model.leads. For
more information see the Model and Lead API reference pages.

8.10. Scattering model 89

http://kwant-project.org/

Pybinding User Guide, Release 0.9.4

90 Chapter 8. Tutorial

CHAPTER 9

Additional Topics

This section will deal with a few of the more advanced features of pybinding. It is assumed that you are already
familiar with the Tutorial.

Lattice specification

This section covers a few extra features of the Lattice class. It is assumed that you are already familiar with
the Tutorial.

First, we set a few constants which are going to be needed in the following examples:

from math import sqrt, pi

a = 0.24595 # [nm] unit cell length
a_cc = 0.142 # [nm] carbon-carbon distance
t = -2.8 # [eV] nearest neighbour hopping

Gamma = [0, 0]
K1 = [-4*pi / (3*sqrt(3)*a_cc), 0]
M = [0, 2*pi / (3*a_cc)]
K2 = [2*pi / (3*sqrt(3)*a_cc), 2*pi / (3*a_cc)]

Intrinsic onsite energy

During the construction of a Lattice object, the full signature of a sublattice is (name, offset,
onsite_energy=0.0), where the last argument is optional. The name and offset arguments were al-
ready explained in the basic tutorial. The onsite_energy is applied as an intrinsic part of the sublattice site.
As an example, we’ll add this term to monolayer graphene:

def monolayer_graphene(onsite_energy=[0, 0]):
lat = pb.Lattice(a1=[a, 0], a2=[a/2, a/2 * sqrt(3)])
lat.add_sublattices(('A', [0, -a_cc/2], onsite_energy[0]),

('B', [0, a_cc/2], onsite_energy[1]))
lat.add_hoppings(([0, 0], 'A', 'B', t),

([1, -1], 'A', 'B', t),
([0, -1], 'A', 'B', t))

91

Pybinding User Guide, Release 0.9.4

return lat

lattice = monolayer_graphene()
lattice.plot()

-0.2 -0.1 0.0 0.1 0.2
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

a1

a2

A

B

[1, -1]

[-1, 1]

[0, -1]

[0, 1]

Note: See Lattice.add_one_sublattice() and Lattice.add_sublattices().

The effect of the onsite energy becomes apparent if we set opposite values for the A and B sublattices. This opens
a band gap in graphene:

model = pb.Model(
monolayer_graphene(onsite_energy=[-1, 1]), # eV
pb.translational_symmetry()

)
solver = pb.solver.lapack(model)
bands = solver.calc_bands(K1, Gamma, M, K2)
bands.plot(point_labels=['K', r'Γ', 'M', 'K'])

K M K
k-space

-10

-5

0

5

10

E
(e

V)

An alternative way of doing this was covered in the Opening a band gap section of the basic tutorial. There, an
@onsite_energy_modifier was used to produce the same effect. The modifier is applied only after the
system is constructed so it can depend on the final (x, y, z) coordinates. Conversely, when the onsite energy is
specified directly in a Lattice object, it models an intrinsic part of the lattice and cannot depend on position. If
both the intrinsic energy and the modifier are specified, the values are added up.

92 Chapter 9. Additional Topics

Pybinding User Guide, Release 0.9.4

Constructing a supercell

A primitive cell is the smallest unit cell of a crystal. For graphene, this is the usual 2-atom cell. It’s translated in
space to construct a larger system. Sometimes it can be convenient to use a larger unit cell instead, i.e. a supercell
consisting of multiple primitive cells. This allows us to slightly adjust the geometry of the lattice. For example,
the 2-atom primitive cell of graphene has vectors at an acute angle with regard to each other. On the other hand,
a 4-atom supercell is rectangular which makes certain model geometries easier to create. It also makes it possible
to realize armchair edges, as shown in Nanoribbons section of the basic tutorial.

We can create a 4-atom cell by adding two more sublattice to the Lattice specification:

def monolayer_graphene_4atom():
lat = pb.Lattice(a1=[a, 0], a2=[0, 3*a_cc])
lat.add_sublattices(('A', [0, -a_cc/2]),

('B', [0, a_cc/2]),
('A2', [a/2, a_cc]),
('B2', [a/2, 2*a_cc]))

lat.add_hoppings(
inside the unit sell
([0, 0], 'A', 'B', t),
([0, 0], 'B', 'A2', t),
([0, 0], 'A2', 'B2', t),
between neighbouring unit cells
([-1, -1], 'A', 'B2', t),
([0, -1], 'A', 'B2', t),
([-1, 0], 'B', 'A2', t),

)
return lat

lattice = monolayer_graphene_4atom()
plt.figure(figsize=(5, 5))
lattice.plot()

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

y
(n

m
)

a1

a2

A2

A

B

B2

[-1, -1]

[1, 1]

[0, -1]

[0, 1]

[-1, 0] [1, 0]

Note the additional sublattices A2 and B2, shown in green and red in the figure. As defined above, these are
interpreted as new and distinct lattice sites. However, we would like to have sublattices A2 and B2 be equivalent

9.1. Lattice specification 93

Pybinding User Guide, Release 0.9.4

to A and B. Lattice.add_aliases() does exactly that:

def monolayer_graphene_4atom():
lat = pb.Lattice(a1=[a, 0], a2=[0, 3*a_cc])
lat.add_sublattices(('A', [0, -a_cc/2]),

('B', [0, a_cc/2]))
lat.add_aliases(('A2', 'A', [a/2, a_cc]),

('B2', 'B', [a/2, 2*a_cc]))
lat.add_hoppings(

inside the unit sell
([0, 0], 'A', 'B', t),
([0, 0], 'B', 'A2', t),
([0, 0], 'A2', 'B2', t),
between neighbouring unit cells
([-1, -1], 'A', 'B2', t),
([0, -1], 'A', 'B2', t),
([-1, 0], 'B', 'A2', t),

)
return lat

lattice = monolayer_graphene_4atom()
plt.figure(figsize=(5, 5))
lattice.plot()

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

y
(n

m
)

a1

a2

A2

A

B

B2

[-1, -1]

[1, 1]

[0, -1]

[0, 1]

[-1, 0] [1, 0]

Now we have a supercell with only two unique sublattices: A and B. The 4-atom graphene unit cell is rectangular
which makes it a more convenient building block than the oblique 2-atom cell.

Removing dangling bonds

When a finite-sized graphene system is constructed, it’s possible that it will contain a few dangling bonds on
the edge of the system. These are usually not desired and can be removed easily by setting the Lattice.
min_neighbors attribute:

94 Chapter 9. Additional Topics

Pybinding User Guide, Release 0.9.4

plt.figure(figsize=(8, 3))
lattice = monolayer_graphene()
shape = pb.rectangle(x=1.4, y=1.1)

plt.subplot(121, title="min_neighbors == 1 -> dangling bonds")
model = pb.Model(lattice, shape)
model.plot()

plt.subplot(122, title="min_neighbors == 2", ylim=[-0.6, 0.6])
model = pb.Model(lattice.with_min_neighbors(2), shape)
model.plot()

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
(n

m
)

min_neighbors == 1 -> dangling bonds

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.4

-0.2

0.0

0.2

0.4

y
(n

m
)

min_neighbors == 2

The dangling atoms on the edges have only one neighbor which makes them unique. When we use the Lattice.
with_min_neighbors() method, the model is required to remove any atoms which have less than the spec-
ified minimum number of neighbors. Note that setting min_neighbors to 3 would produce an empty system
since it is impossible for all atoms to have at least 3 neighbors.

Global lattice offset

When we defined monolayer_graphene() at the start of this section, we set the positions of the sublattices
as [𝑥, 𝑦] = [0,±𝑎𝑐𝑐], i.e. the coordinate system origin is at the midpoint between A and B atoms. It can sometimes
be convenient to choose a different origin position such as the center of a hexagon formed by the carbon atoms.
Rather than define an entirely new lattice with different positions for A and B, we can simply offset the entire
lattice by setting the Lattice.offset attribute:

plt.figure(figsize=(8, 3))
shape = pb.regular_polygon(num_sides=6, radius=0.55)

plt.subplot(121, title="Origin between A and B atoms")
model = pb.Model(monolayer_graphene(), shape)
model.plot()
model.shape.plot()

plt.subplot(122, title="Origin in the center of a hexagon")
model = pb.Model(monolayer_graphene().with_offset([a/2, 0]), shape)
model.plot()
model.shape.plot()

9.1. Lattice specification 95

Pybinding User Guide, Release 0.9.4

-0.4 -0.2 0.0 0.2 0.4
x (nm)

-0.4

-0.2

0.0

0.2

0.4

y
(n

m
)

Origin between A and B atoms

-0.4 -0.2 0.0 0.2 0.4
x (nm)

-0.4

-0.2

0.0

0.2

0.4

y
(n

m
)

Origin in the center of a hexagon

Note that the shape remains unchanged, only the lattice shifts position. We could have achieved the same result
by only moving the shape, but then the center of the shape would not match the origin of the coordinate system.
The Lattice.with_offset() makes it easy to position the lattice as needed. Note that the given offset must
be within half the length of a primitive lattice vector (positive or negative). Beyond that length the lattice repeats
periodically, so it doesn’t make sense to shift it any father.

Composite shapes

The basic usage of shapes was explained in the Finite size section of the tutorial. An overview of all the classes
and function is available in the Shapes API reference. This section show how multiple of those shapes can be
composed to quickly create intricate systems.

Moving shapes

All shapes have a with_offset() method which simply translates the shape by a vector:

shape = pb.rectangle(2, 2)
translated_shape = shape.with_offset([1, -1])
shape.plot()
translated_shape.plot()

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

This applies to any kind of shape, including user-defined freeform shapes:

96 Chapter 9. Additional Topics

Pybinding User Guide, Release 0.9.4

def circle(radius):
def contains(x, y, z):

return np.sqrt(x**2 + y**2) < radius
return pb.FreeformShape(contains, width=[2*radius, 2*radius])

shape = circle(1)
translated_shape = shape.with_offset([1, 0])
shape.plot()
translated_shape.plot()

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Note that Polygon and FreeformShape are presented differently in the plots. For polygons, a line which
connects all vertices is plotted. Freeform shapes are shown as a lightly shaded silhouette which is filled in by
calling the contains function and placing dark pixels at positions where it returned True.

Using set operations

In the examples above we placed 2 shapes so that they overlap, but those were only plots. In order to create a
composite shape, we can use logical and arithmetic operator. For example, addition:

s1 = pb.rectangle(2.3, 2.15)
s2 = s1.with_offset([1.12, -1.05])

composite_shape = s1 + s2
composite_shape.plot()

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
x (nm)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y
(n

m
)

Note that even though we have combined two polygons, the composite shape is plotted in the style of a freeform
shape. This is intentional to allow making completely generic shapes.

The + operator creates a union of the two shapes and the result can be used with a model:

9.2. Composite shapes 97

Pybinding User Guide, Release 0.9.4

from pybinding.repository import graphene

model = pb.Model(graphene.monolayer(), composite_shape)
model.plot()

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
x (nm)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Shapes are composed in terms of set operations (e.g. unions, intersections) and the syntax mirrors that of Python’s
builtin set. The available operators and their results are shown in the code and figure below. Note that the + and
| operators perform the same function (union). Both are available simply for convenience. Apart from -, all the
operators are symmetric.

grid = plt.GridSpec(3, 2, hspace=0.4)
plt.figure(figsize=(6.7, 8))

titles_and_shapes = [
("Union: s1 + s2", s1 + s2),
("Union: s1 | s2 (alternative notation)", s1 | s2),
("Intersection: s1 & s2", s1 & s2),
("Symmetric difference: s1 ^ s2", s1 ^ s2),
("Difference: s1 - s2", s1 - s2),
("Difference: s2 - s1", s2 - s1)

]

for g, (title, shape) in zip(grid, titles_and_shapes):
plt.subplot(g, title=title)
s1.plot()
s2.plot()
model = pb.Model(graphene.monolayer(), shape)
model.shape.plot()
model.plot()

98 Chapter 9. Additional Topics

Pybinding User Guide, Release 0.9.4

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Union: s1 + s2

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Union: s1 | s2 (alternative notation)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Intersection: s1 & s2

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Symmetric difference: s1 ^ s2

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Difference: s1 - s2

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Difference: s2 - s1

This isn’t limited to just two operands. Any number of shapes can be freely combined:

from math import pi

rectangle = pb.rectangle(x=6, y=1)
hexagon = pb.regular_polygon(num_sides=6, radius=1.92, angle=pi/6)
circle = pb.circle(radius=0.6)

model = pb.Model(
graphene.monolayer(),
(rectangle + hexagon) ^ circle

)
model.shape.plot()
model.plot()

9.2. Composite shapes 99

Pybinding User Guide, Release 0.9.4

-3 -2 -1 0 1 2 3
x (nm)

-2

-1

0

1

2
y

(n
m

)

Additional examples

Circular rings are easy to create even with a FreeformShape, but composites make it trivial to create rings as
the difference of any two shapes:

outer = pb.regular_polygon(num_sides=6, radius=1.4)
inner = pb.regular_polygon(num_sides=6, radius=0.8)
model = pb.Model(graphene.bilayer(), outer - inner)
model.shape.plot()
model.plot()

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y
(n

m
)

Of course, we can also go a bit wild:

plt.figure(figsize=(6.7, 2.6))

circle = pb.circle(radius=2)
triangle = pb.regular_polygon(num_sides=3, radius=2, angle=pi / 6).with_offset([1.
→˓4, 0])
pm = pb.Model(graphene.monolayer(), circle - triangle)
pm.plot()

dot = pb.circle(radius=0.8)
for x in [3.55, 6.25, 8.95]:

pd = pb.Model(graphene.bilayer(), dot.with_offset([x, 0]))
pd.plot()

100 Chapter 9. Additional Topics

Pybinding User Guide, Release 0.9.4

0 2 4 6 8
x (nm)

-2

-1

0

1

2
y

(n
m

)

Multi-orbital models

In pybinding, if an onsite or hopping energy term is defined as a matrix (instead of a scalar), we refer to the
resulting model as multi-orbital. The elements of the matrix term may correspond to different spins, electrons and
holes, or any other degrees of freedom. These can have different physical meaning depending on the intend of the
model. Because we’re talking in generic terms here, we’ll use orbital as a blanket term to refer to any degree of
freedom, i.e. matrix element of an onsite or hopping term.

This section describes how these models can be defined and how the presence of multiple orbitals affects modifier
functions and the results obtained from solvers. In general, it is as simple as replacing a scalar value with a matrix
while all of the principals described in the Tutorial still apply.

Onsite and hopping matrices

Starting from the very beginning, the orbital count of a site is determined by the shape of the onsite energy matrix.
Let’s take a look at a few possibilities:

lat = pb.Lattice([1, 0], [0, 1])
lat.add_sublattices(

("A", [0.0, 0.0], 0.5), # single-orbital: scalar
("B", [0.0, 0.2], [[1.5, 2j], # two-orbital: 2x2 Hermitian matrix

[-2j, 1.5]]),
("C", [0.3, 0.1], np.zeros(2)), # two-orbital: zero onsite term
("D", [0.1, 0.0], [[4, 0, 0], # three-orbital: only diagonal

[0, 5, 0],
[0, 0, 6]]),

("E", [0.2, 0.2], [4, 5, 6]) # three-orbital: only diagonal, terse notation
)

The onsite term is required to be a square Hermitian matrix. If a 1D array is given instead of a matrix, it will
be interpreted as the main diagonal of a square matrix (see sublattices D and E which have identical onsite term
specified with different notations).

As seen above, sublattices don’t need to all have the same orbital count. The only thing to keep in mind is that the
hopping matrix which connect a pair of sublattice sites must have the appropriate shape: the number of rows must
match the orbital count of the source sublattice and the number of columns must match the destination sublattice.

lat.add_hoppings(
([0, 1], "A", "A", 1.2), # scalar
([0, 1], "B", "B", [[1, 2], # 2x2

[3, 4]]),
([0, 0], "B", "C", [[2j, 0], # 2x2

[1j, 0]]),

9.3. Multi-orbital models 101

Pybinding User Guide, Release 0.9.4

([0, 0], "A", "D", [[1, 2, 3]]), # 1x3
([0, 1], "D", "A", [[7], # 3x1

[8],
[9]]),

([0, 0], "B", "D", [[1j, 0, 0], # 2x3
[2, 0, 3j]])

)

If a matrix of the wrong shape is given, an informative error is raised:

>>> lat.add_one_hopping([0, 0], "A", "B", 0.6)
RuntimeError: Hopping size mismatch: from 'A' (1) to 'B' (2) with matrix (1, 1)
>>> lat.add_one_hopping([0, 1], "D", "D", [[1, 2, 3],
... [4, 5, 6]])
RuntimeError: Hopping size mismatch: from 'D' (3) to 'D' (3) with matrix (2, 3)

After the Lattice is complete, a Model can be built as usual:

>>> model = pb.Model(lat, pb.primitive(2, 2))
>>> model.system.num_sites
20 # <-- 5 sites per unit cell and 2x2 cells: 5*2*2 == 20
>>> model.hamiltonian.shape
(44, 44) # <-- 11 (1+2+2+3+3) orbitals per unit cell and 2x2 cells: 11*2*2 = 44

Sites refer to physical locations so their total count corresponds to the number of sublattices (A to E) multiplied
by the number of times the unit cell is repeated. The Hamiltonian matrix is larger than num_sites due to the
extra orbitals.

Effect on modifier functions

The @onsite_energy_modifier and @hopping_energy_modifier functions work equally well for
single- and multi-orbital models. In case of the latter, the energy argument of the modifiers will have a shape
matching the onsite/hopping matrix term.

@pb.onsite_energy_modifier
def potential(energy, x):

"""Linear onsite potential as a function of x for a 2-orbital model"""
return energy + np.eye(2) * x

Note the np.eye(2) in the code above. The number 2 matches the 2-orbital structure of a specific model.
Without this, energy + x would also add the value to the off-diagonal elements of the onsite matrix which is
not desirable in this case.

The modifier defined above will only work for 2-orbital models. In general, we might want to create modifiers
which work with any n-orbital model or with a mixed number of orbitals. For this we can use the sub_id
modifier argument and its .eye attribute which supplies the correct matrix shape for any sublattice:

@pb.onsite_energy_modifier
def potential(energy, x, sub_id):

"""Same as above, but works for any n-orbital model"""
return energy + sub_id.eye * x

Even more generally, if we wish to apply completely different functions to the various sublattices, the sub_id
argument can be used to create different branches in the modifier:

@pb.onsite_energy_modifier
def potential(energy, x, sub_id):

"""Applies different functions to different sublattices"""
if sub_id == "A":

return energy + x # we know sublattice A is single-orbital
elif sub_id == "D":

102 Chapter 9. Additional Topics

https://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html#numpy.eye

Pybinding User Guide, Release 0.9.4

energy[x > 0] += sub_id.eye * x # the notation can be mixed with numpy
→˓indexing

return energy # apply only to sites where x > 0
elif sub_id == "B":

sigma_y = np.array([[0, -1j],
[1j, 0]])

return energy + sigma_y * 1.3 - np.eye(2) * 0.6 # add multiple 2x2
→˓matrices

else:
return energy # leave the other sublattices unchanged

This branching behavior is only supported by the sub_id and hop_id arguments. Do not try to create branches
like this using any of the other modifier arguments:

"""Creating a position-dependent potential"""
This is an error with anything except sub_id or hop_id
if x > 0:

return energy + 1
else:

return energy - 1

Use this notation instead
energy[x > 0] += 1
energy[x <= 0] -= 1

On the other hand, sub_id and hop_id can be used with either of these variants with just a single caveat:

"""Sublattice-dependent potential"""
This always works with sub_id and hop_id
if sub_id == "A":

return energy + 1
else:

return energy - 1

This only works when all sublattices have the same number of orbitals,
but it will raise an error for mixed orbital counts.
energy[sub_id == "A"] += 1
energy[sub_id == "B"] -= 1

Local properties and plotting

When examining the local properties of a multi-orbital model, it is important to make the distinction between
system indices which correspond to sites (unique positions) and Hamiltonian indices which correspond to the
onsite or hopping terms in the Hamiltonian.

As shown in one of the previous examples, the number of sites in a system does not have to be equal to the size
of the Hamiltonian matrix (hamiltonian.shape[0] >= num_sites). This affects how the system and
Hamiltonian are indexed. System indices are always scalars and point to a single site position. For single-orbital
models there is a 1:1 correspondence between system and Hamiltonian indices. However, for multi-orbital models
the Hamiltonian indices are 1D arrays with a size corresponding to the number of orbitals on the target site.

>>> model = pb.Model(lat, pb.primitive(2, 2))
>>> sys_idx = model.system.find_nearest(position=[0, 0], sublattice="D")
>>> sys_idx # <-- Points to a site on sublattice D which is closest to the target
→˓position.
15 # It's always a scalar.
>>> model.system.x[sys_idx]
0.1 # <-- Not exactly 0 as requested, but the closest site to it.
>>> model.system.y[sys_idx]
0.0

9.3. Multi-orbital models 103

Pybinding User Guide, Release 0.9.4

>>> ham_idx = model.system.to_hamiltonian_indices(sys_idx)
>>> ham_idx # <-- Array of integers which can be used to index the Hamiltonian
→˓matrix.
[29, 30, 31] # Size 3 because the selected site is on the 3-orbital
→˓sublattice D.
>>> ham = model.hamiltonian.todense()
>>> ham[np.ix_(ham_idx, ham_idx)] # Returns the onsite hopping term of sublattice
→˓D.
[[4, 0, 0],
[0, 5, 0],
[0, 0, 6]]

Functions which compute various local properties take into account the presence of multiple orbitals on a single
site. For example, when calculating the local density of states, one of the input parameters is the target site
position. By default, the resulting LDOS is calculated as the sum of all orbitals but this is optional as shown in the
following example:

"""Calculate the LDOS in the center of a MoS2 quantum dot"""
from pybinding.repository import group6_tmd

model = pb.Model(group6_tmd.monolayer_3band("MoS2"),
pb.regular_polygon(6, 20))

kpm = pb.kpm(model)
energy = np.linspace(-1, 3.8, 500)
broadening = 0.05
position = [0, 0]

plt.figure(figsize=(6.7, 2.3))

plt.subplot(121, title="Reduced -- sum of all orbitals")
ldos = kpm.calc_ldos(energy, broadening, position)
ldos.plot(color="C1")

plt.subplot(122, title="Individual orbitals")
ldos = kpm.calc_ldos(energy, broadening, position, reduce=False)
ldos.plot()

-1 0 1 2 3
E (eV)

0
1
2
3
4
5
6
7
8
9

LD
OS

Reduced -- sum of all orbitals

-1 0 1 2 3
E (eV)

0

1

2

3

4

5

LD
OS

Individual orbitals
orbitals

0
1
2

Kwant compatibility

Kwant is a Python package for numerical tight-binding similar to pybinding, but it’s specialized for transport
calculations. Since the two packages work with the same kind of Hamiltonian matrices, it’s possible to build
a model in pybinding and use Kwant to compute the transport properties. The advantage for pybinding users
is access to Kwant’s transport solvers in addition to pybinding’s builtin computational routines. The advantage

104 Chapter 9. Additional Topics

http://kwant-project.org/

Pybinding User Guide, Release 0.9.4

for Kwant users is the much faster system build times made possible by pybinding’s model builder – see the
Benchmarks.

Exporting a model

The procedure for constructing and solving transport problems in Kwant can be summarized with the following
lines of pseudo-code:

1. BUILD model system
builder = kwant.Builder()
... # specify model parameters
system = builder.finalized()

2. COMPUTE scattering matrix
smatrix = kwant.smatrix(system)
... # call smatrix methods

If we want to use pybinding to build the model, we can just replace the first part:

1. BUILD model system
model = pb.Model(...) # specify model parameters
kwant_system = model.tokwant() # export to kwant format

2. COMPUTE scattering matrix
smatrix = kwant.smatrix(kwant_system)
... # call smatrix methods

A pybinding Model is defined as usual and then converted to the Kwant-compatible format by calling the Model.
tokwant() method. The resulting kwant_system can be used as expected.

Complete example

A detailed overview of scattering model construction in pybinding is available in the tutorial. Here, we present a
simple example of a graphene wire with a potential barrier:

from pybinding.repository import graphene

def potential_barrier(v0, x0):
"""Barrier height `v0` in eV with spatial position `-x0 <= x <= x0`"""
@pb.onsite_energy_modifier(is_double=True) # enable double-precision floating-

→˓point
def function(energy, x):

energy[np.logical_and(-x0 <= x, x <= x0)] = v0
return energy

return function

def make_model(length, width, v0=0):
model = pb.Model(

graphene.monolayer(),
pb.rectangle(length, width),
potential_barrier(v0, length / 4)

)
model.attach_lead(-1, pb.line([-length/2, -width/2], [-length/2, width/2]))
model.attach_lead(+1, pb.line([length/2, -width/2], [length/2, width/2]))
return model

model = make_model(length=1, width=2) # nm
model.plot()

9.4. Kwant compatibility 105

Pybinding User Guide, Release 0.9.4

-4 -3 -2 -1 0 1 2 3 4
x (nm)

-1.0
-0.5
0.0
0.5
1.0

y
(n

m
)

lead 0 lead 1

We can then vary the height of the potential barrier and calculate the transmission using Kwant:

import kwant

length, width = 15, 15 # nm
electron_energy = 0.25 # eV
barrier_heights = np.linspace(0, 0.5, 100) # eV

transmission = []
for v in barrier_heights:

model = make_model(length, width, v) # pybinding model
kwant_system = model.tokwant() # export to kwant
smatrix = kwant.smatrix(kwant_system, energy=electron_energy)
transmission.append(smatrix.transmission(1, 0))

For more information about kwant.smatrix and other transport calculations, please refer to the Kwant web-
site. That is outside the scope of this guide. The purpose of this section is to present the Model.tokwant()
compatibility method. The exported system is then in the domain of Kwant.

From there, it’s trivial to plot the results:

plt.plot(barrier_heights, transmission)
plt.ylabel("transmission")
plt.xlabel("barrier height (eV)")
plt.axvline(electron_energy, 0, 0.5, color="gray", linestyle=":")
plt.annotate("electron energy\n{} eV".format(electron_energy), (electron_energy, 0.
→˓54),

xycoords=("data", "axes fraction"), horizontalalignment="center")
pb.pltutils.despine() # remove top and right axis lines

0.0 0.1 0.2 0.3 0.4 0.5
barrier height (eV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

m
iss

io
n electron energy

0.25 eV

Note that the transmission was calculated for an energy value of 0.25 eV. As the height of the barrier is increased,
two regimes are clearly distinguishable: transmission over and through the barrier.

Performance considerations

The Kwant documentation recommends separating model parameters into two parts: the structural data which
remains constant and fields which can be varied. This yields better performance because only the field data needs

106 Chapter 9. Additional Topics

http://kwant-project.org/
http://kwant-project.org/

Pybinding User Guide, Release 0.9.4

to be repopulated. This is demonstrated with the following pseudo-code which loops over some parameter x:

builder = kwant.Builder()
... # specify structural parameters
system = builder.finalized()

for x in xs:
smatrix = kwant.smatrix(system, args=[x]) # apply fields
... # call smatrix methods

This separation is not required with pybinding. As pointed out in the Benchmarks, the fast builder makes it possible
to fully reconstruct the model in every loop iteration at no extra performance cost. This simplifies the code since
all the parameters can be applied in a single place:

def make_model(x):
return pb.Model(..., x) # all parameters in one place

for x in xs:
smatrix = kwant.smatrix(make_model(x).tokwant()) # constructed all at once
... # call smatrix methods

You can download a full example file which implements transport through a barrier like the one presented above.
The script uses both builders so you can compare the implementation as well as the performance. Download the
example file and try it on your system. Our results are presented below (measured using Intel Core i7-4960HQ
CPU, 16 GiB RAM, Python 3.5, macOS 10.11). The size of the square scattering region is increased and we
measure the total time required to calculate the transmission:

5 10 15 20 25 30
system size (nm)

0

20

40

60

80

100

120

140

160

tim
e

(s
ec

on
ds

)

transmission calculation time
kwant
pybinding

For each system size, the transmission is calculated as a function of barrier height for 100 values. Even though
pybinding reconstructs the entire model every time the barrier is changed, the system build time is so fast that it
doesn’t affect the total calculation time. In fact, the extremely fast build actually enables pybinding to outperform
Kwant in the overall calculation. Even though Kwant only repopulates field data at each loop iteration, this still
takes more time than it does for pybinding to fully reconstruct the system.

Note that this example presents a relatively simple system with a square barrier. This is done to keep the run time
to only a few minutes, for convenience. Here, pybinding speeds up the overall calculation by about 40%. For
more realistic examples with larger scattering regions and complicated field functions with multiple parameters, a
speedup of 3-4 times can be achieved by using pybinding’s model builder.

Floating-point precision

Pybinding can generate the Hamiltonian matrix with one of four data types: real or complex numbers with sin-
gle or double precision (32-bit or 64-bit floating point). The selection is dynamic. The starting case is always
real with single precision and from there the data type is automatically promoted as needed by the model. For
example, adding translationally symmetry or a magnetic field will cause the builder to switch to complex num-
bers – this is detected automatically. On the other hand, the switch to double precision needs to be requested

9.4. Kwant compatibility 107

Pybinding User Guide, Release 0.9.4

by the user. The onsite and hopping energy modifiers have an optional is_double parameter which can be
set to True. The builder switches to double precision if requested by at least one modifier. Alternatively,
force_double_precision() can be given to a Model as a direct parameter.

The reason for all of this is performance. Most solvers work faster with smaller data types: they consume less
memory and bandwidth and SIMD vectorization becomes more efficient. This is assuming that single precision
and/or real numbers are sufficient to describe the given model. In case of Kwant’s solvers, it seems to require
double precision in most cases. This is the reason for the is_double=True flag in the above example. Keep
this in mind when exporting to Kwant.

108 Chapter 9. Additional Topics

CHAPTER 10

Plotting Guide

All of the plotting functions in pybinding are create using matplotlib. This means that you can customize the
appearance of the figures using standard matplotlib commands. However, some plots (like lattice structure) are
specialized to tight-binding models and have some additional options in contrast to ordinary plot templates (line
plot, scatter, quiver, etc.). This guide will present the workflow for customizing figures in pybinding.

You can also create your own figures from scratch using just the raw data from pybinding. However, it is far more
convenient to use pybinding’s builtin plot methods as a base and use matplotlib’s API to customize as needed. The
builtin methods have already taken care of most of the work needed to represent arbitrary tight-binding models
and their properties. This is done in the most general way possible in order to produce reasonable looking figures
for most systems. However, because of the huge variety of tight-binding models, the preset style may not always
be ideal. This is where this customization guide comes in.

Model structure

A structure plot presents the crystal structure of a model by drawing lattice sites as circles and hoppings as lines
which connect the circles. At first glance, this seems like a combination of the standard scatter and line plots
found in matplotlib, but the specific requirements of tight-binding complicate the implementation. This is why
pybinding has its own specialized structure plotting functions. While these functions are based on matplotlib, they
offer additional options which will be explained here.

Structure plot classes

A few different classes in pybinding use structure plots. These are Lattice, Model, System, Lead and
StructureMap. They all represent some kind of spatial structure with sites and hoppings. Note that most of
these classes are components of the main Model. Calling their plot methods will draw the structure which they
represent. The following pseudo-code presents a few possibilities:

model = pb.Model(...) # specify model
model.attach_lead(...) # specify leads

model.lattice.plot() # just the unit cell
model.plot() # the main system and leads
model.system.plot() # only the main system
model.leads[0].plot() # only lead 0

109

http://matplotlib.org/

Pybinding User Guide, Release 0.9.4

In the following sections we’ll present a few features of the structure plotting API. The examples will involve
mainly Model.plot(), but all of these methods share the same common API.

Draw only certain hoppings

The structure plot usually draws lines for all hoppings. We can see an example here with the third-nearest-neighbor
model of graphene. Note the huge number of hoppings in the figure below. The extra information may be useful
for calculations, but it is not always desirable for figures because of the extra noise. To filter out some of the lines,
we can pass the draw_only argument as a list of hopping names. For example, if we only want the first-nearest
neighbors:

from pybinding.repository import graphene

plt.figure(figsize=(7, 3))
model = pb.Model(graphene.monolayer(nearest_neighbors=3), graphene.hexagon_ac(1))

plt.subplot(121, title="Unfiltered: all 3 hoppings")
model.plot()

plt.subplot(122, title="Filtered: shows only nearest")
model.plot(hopping={'draw_only': ['t']})

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Unfiltered: all 3 hoppings

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Filtered: shows only nearest

We can also select hoppings in any combination:

plt.figure(figsize=(7, 3))

plt.subplot(121, title="t and t_{nn}")
model.plot(hopping={'draw_only': ['t', 't_nn']})

plt.subplot(122, title="t and t_{nnn}")
model.plot(hopping={'draw_only': ['t', 't_nnn']})

110 Chapter 10. Plotting Guide

Pybinding User Guide, Release 0.9.4

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

t and tnn

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

t and tnnn

Site radius and color

The site radius is given in data units (nanometers in this example). Colors are passed as a list of colors or a
matplotlib colormap.

plt.figure(figsize=(7, 3))
model = pb.Model(graphene.monolayer(), graphene.hexagon_ac(0.5))

plt.subplot(121, title="Default")
model.plot()

plt.subplot(122, title="Customized")
model.plot(site={'radius': 0.04, 'cmap': ['blue', 'red']})

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
(n

m
)

Default

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
(n

m
)

Customized

Hopping width and color

By default, all hopping kinds (nearest, next-nearest, etc.) are shown using the same line color, but they can be
colorized using the cmap parameter.

plt.figure(figsize=(7, 3))
model = pb.Model(graphene.monolayer(nearest_neighbors=3), pb.rectangle(0.6))

10.1. Model structure 111

Pybinding User Guide, Release 0.9.4

plt.subplot(121, title="Default")
model.plot()

plt.subplot(122, title="Customized")
model.plot(hopping={'width': 2, 'cmap': 'auto'})

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

Default

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

Customized

Redraw all axes spines

By default, pybinding plots will remove the right and top axes spines. To recover those lines call the pltutils.
respine() function.

model = pb.Model(graphene.monolayer(), graphene.hexagon_ac(1))
model.plot()
pb.pltutils.respine()

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Plot only sites or only hoppings

It can sometimes be useful to separate the plotting of sites and hoppings. Notably, for large systems drawing a
huge number of hopping lines can become quite slow and they may even be too small to actually see in the figure.
In such cases, removing the hoppings can speed up plotting considerably. Another use case is for the composition
of multiple plots – see the next page for an example.

112 Chapter 10. Plotting Guide

Pybinding User Guide, Release 0.9.4

plt.figure(figsize=(7, 3))
model = pb.Model(graphene.monolayer(), graphene.hexagon_ac(1))

plt.subplot(121, title="Only sites")
model.plot(hopping={"width": 0})

plt.subplot(122, title="Only hoppings")
model.plot(site={"radius": 0})

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Only sites

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Only hoppings

Rotating the view

By default, all structure plots show the xy-plane. The view can be rotated by settings the axes argument to a
string consisting of any combination of the letters “x”, “y” and “z”.

model = pb.Model(graphene.monolayer().with_offset([-graphene.a / 2, 0]),
pb.regular_polygon(num_sides=6, radius=1.8),
graphene.gaussian_bump(height=0.7, sigma=0.7))

plt.figure(figsize=(6.8, 7.5))
plt.subplot(221, title="xy", ylim=[-1.8, 1.8])
model.plot()
plt.subplot(222, title="xz")
model.plot(axes="xz")
plt.subplot(223, title="yx", xlim=[-1.8, 1.8])
model.plot(axes="yx")
plt.subplot(224, title="zy")
model.plot(axes="zy")

10.1. Model structure 113

Pybinding User Guide, Release 0.9.4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y
(n

m
)

xy

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

0.0
0.2
0.4
0.6
0.8

z (
nm

)

xz

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
y (nm)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x
(n

m
)

yx

0.0 0.5 1.0
z (nm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
y

(n
m

)

zy

Slicing layers

For multilayer materials, it is sometimes useful to plot each layer individually.

model = pb.Model(graphene.bilayer().with_offset([graphene.a/2, 0]),
pb.regular_polygon(num_sides=6, radius=1))

plt.figure(figsize=(6.8, 1.8))
plt.subplot(131, title="both layers")
model.plot()

plt.subplot(132, title="bottom layer")
s = model.system
s[s.z < 0].plot()

plt.subplot(133, title="top layer")
s[s.z >= 0].plot()

114 Chapter 10. Plotting Guide

Pybinding User Guide, Release 0.9.4

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0
y

(n
m

)
both layers

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

bottom layer

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

top layer

Structure-mapped data

As shown in the previous section, many classes in pybinding use structure plots in a similar way. One class
stands out here: StructureMap can be used to map any arbitrary data onto the spatial structure of a model.
StructureMap objects are produced in two cases: as the results of various computation functions (e.g.
Solver.calc_spatial_ldos()) or returned from Model.structure_map() which can map custom
user data.

Draw only certain hoppings

Just as before, we can draw only the desired hoppings. Note that smap is a StructureMap returned by
Solver.calc_probability().

from pybinding.repository import graphene

plt.figure(figsize=(7, 3))

plt.subplot(121, title="The model")
model = pb.Model(graphene.monolayer(nearest_neighbors=3), graphene.hexagon_ac(1))
model.plot(hopping={'draw_only': ['t']})

plt.subplot(122, title="$|\Psi|^2$")
solver = pb.solver.arpack(model, k=10)
smap = solver.calc_probability(n=2)
smap.plot(hopping={'draw_only': ['t']})
pb.pltutils.colorbar()

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

The model

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

| |2

0.5

1.0

1.5

2.0

2.5

1e-2

10.2. Structure-mapped data 115

Pybinding User Guide, Release 0.9.4

Slicing a structure

This follows a syntax similar to numpy fancy indexing where we can give a condition as the index.

plt.figure(figsize=(7, 3))

plt.subplot(121, title="Original")
smap.plot(hopping={'draw_only': ['t']})

plt.subplot(122, title="Sliced: y > 0")
upper = smap[smap.y > 0]
upper.plot(hopping={'draw_only': ['t']})

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Original

-1.0 -0.5 0.0 0.5 1.0
x (nm)

0.0

0.2

0.4

0.6

0.8

1.0
y

(n
m

)

Sliced: y > 0

plt.figure(figsize=(7, 3))

plt.subplot(121, title="Original: A and B")
smap.plot(hopping={'draw_only': ['t', 't_nn']})

plt.subplot(122, title="Sliced: A only")
a_only = smap[smap.sublattices == 'A']
a_only.plot(hopping={'draw_only': ['t', 't_nn']})

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Original: A and B

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Sliced: A only

116 Chapter 10. Plotting Guide

Pybinding User Guide, Release 0.9.4

Mapping custom data

The method Model.structure_map() returns a StructureMap where any user-defined data can be
mapped to the spatial positions of the lattice sites. The data just needs to be a 1D array with the same size as the
total number of sites in the system.

plt.figure(figsize=(6.8, 3))

plt.subplot(121, title="The model")
model = pb.Model(graphene.monolayer(), graphene.hexagon_ac(1))
model.plot()

plt.subplot(122, title="Custom color data: 2x * (y + 1)")
custom_data = 2 * model.system.x * (model.system.y + 1)
smap = model.structure_map(custom_data)
smap.plot()
pb.pltutils.colorbar()

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

The model

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Custom color data: 2x * (y + 1)

-2

-1

0

1

2

plt.figure(figsize=(6.8, 3))

plt.subplot(121, title="sin(10x)")
smap = model.structure_map(np.sin(10 * model.system.x))
smap.plot()
pb.pltutils.colorbar()

plt.subplot(122, title="cos(5y)")
smap = model.structure_map(np.cos(5 * model.system.y))
smap.plot()
pb.pltutils.colorbar()

10.2. Structure-mapped data 117

Pybinding User Guide, Release 0.9.4

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

sin(10x)

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

1e-1

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

cos(5y)

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

1e-1

Contour plots for large systems

For larger systems, structure plots don’t make much sense because the details of the sites and hoppings would be
too small to see. Contour plots look much better in this case.

plt.figure(figsize=(6.8, 3))
model = pb.Model(graphene.monolayer(), graphene.hexagon_ac(10))

plt.subplot(121, title="sin(x)")
smap = model.structure_map(np.sin(model.system.x))
smap.plot_contourf()
pb.pltutils.colorbar()

plt.subplot(122, title="cos(y/2)")
smap = model.structure_map(np.cos(0.5 * model.system.y))
smap.plot_contourf()
pb.pltutils.colorbar()

-5 0 5
x (nm)

-5

0

5

y
(n

m
)

sin(x)

-10.00

-7.96

-5.92

-3.88

-1.84

0.20

2.24

4.29

6.33

8.37

1e-1

-5 0 5
x (nm)

-5

0

5

y
(n

m
)

cos(y/2)

-10.00

-7.96

-5.92

-3.88

-1.84

0.20

2.24

4.28

6.32

8.36

1e-1

Composing multiple plots

Various plotting methods or even different invocations of the same method can be composed to create nice figures.
For example, we may want to use different colormaps to distinguish between sublattices A and B when plotting

118 Chapter 10. Plotting Guide

Pybinding User Guide, Release 0.9.4

some data on top of the structure of graphene. Below, the first pass plots only the hopping lines, the second pass
draws the sites of sublattice A and the third draws sublattice B. The darkness of the color indicates the intensity
of the mapped data, while blue/red distinguishes the sublattices.

model = pb.Model(graphene.monolayer(), graphene.hexagon_ac(1))
custom_data = 2 * model.system.x * (model.system.y + 1)
smap = model.structure_map(custom_data)

plt.figure(figsize=(6.8, 3))
plt.subplot(121, title="Regular plot")
smap.plot()

plt.subplot(122, title="Composite plot")
smap.plot(site_radius=0) # only draw hopping lines, no sites
a_only = smap[smap.sublattices == "A"]
a_only.plot(cmap="Blues", hopping={'width': 0}) # A sites, no hoppings
b_only = smap[smap.sublattices == "B"]
b_only.plot(cmap="Reds", hopping={'width': 0}) # B sites, no hoppings

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0

y
(n

m
)

Regular plot

-0.5 0.0 0.5
x (nm)

-0.5

0.0

0.5

y
(n

m
)

Composite plot

10.2. Structure-mapped data 119

Pybinding User Guide, Release 0.9.4

120 Chapter 10. Plotting Guide

CHAPTER 11

Random Examples

If you’re just browsing, the Tutorial section is the best place to start. It gives a good overview of the most important
features with lots of code examples. This section contains a few more examples which did not fit into Tutorial or
Additional Topics.

Lattice specification and bands

Checkerboard

Source code

"""Two dimensional checkerboard lattice with real hoppings"""
import pybinding as pb
import matplotlib.pyplot as plt
from math import pi

pb.pltutils.use_style()

def checkerboard(d=0.2, delta=1.1, t=0.6):
lat = pb.Lattice(a1=[d, 0], a2=[0, d])
lat.add_sublattices(

('A', [0, 0], -delta),
('B', [d/2, d/2], delta)

)
lat.add_hoppings(

([0, 0], 'A', 'B', t),
([0, -1], 'A', 'B', t),
([-1, 0], 'A', 'B', t),
([-1, -1], 'A', 'B', t)

)
return lat

lattice = checkerboard()
lattice.plot()
plt.show()

121

Pybinding User Guide, Release 0.9.4

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
y

(n
m

)

a1

a2

A

B

[0, -1]

[0, 1]

[-1, 0] [1, 0]

[-1, -1]

[1, 1]

lattice.plot_brillouin_zone()
plt.show()

-20 -10 0 10 20
kx(nm 1)

-20

-10

0

10

20

k y
(n

m
1)

b1

b2

[-5 , -5] [5 , -5]

[5 , 5][-5 , 5]

model = pb.Model(checkerboard(), pb.translational_symmetry())
solver = pb.solver.lapack(model)

bands = solver.calc_bands([0, 0], [0, 5*pi], [5*pi, 5*pi], [0, 0])
bands.plot()
plt.show()

122 Chapter 11. Random Examples

Pybinding User Guide, Release 0.9.4

[0, 0] [0, 5] [5 , 5] [0, 0]
k-space

-3

-2

-1

0

1

2

3
E

(e
V)

Trestle

Source code

"""One dimensional lattice with complex hoppings"""
import pybinding as pb
import matplotlib.pyplot as plt

pb.pltutils.use_style()

def trestle(d=0.2, t1=0.8 + 0.6j, t2=2):
lat = pb.Lattice(a1=1.3*d)
lat.add_sublattices(

('A', [0, 0], 0),
('B', [d/2, d], 0)

)
lat.add_hoppings(

(0, 'A', 'B', t1),
(1, 'A', 'B', t1),
(1, 'A', 'A', t2),
(1, 'B', 'B', t2)

)
return lat

lattice = trestle()
lattice.plot()
plt.show()

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
x (nm)

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

a1

A

B

[1][-1] [1][-1] [1][-1]

11.1. Lattice specification and bands 123

Pybinding User Guide, Release 0.9.4

lattice.plot_brillouin_zone()
plt.show()

-3.8 0 3.8
kx(nm 1)

1.01.5

model = pb.Model(trestle(), pb.translational_symmetry())
solver = pb.solver.lapack(model)

start, end = lattice.brillouin_zone()
bands = solver.calc_bands(start, end)
bands.plot()
plt.show()

-3.8 3.8
k-space

-6

-4

-2

0

2

4

6

E
(e

V)

Monolayer graphene

Source code

"""Create and plot a monolayer graphene lattice, its Brillouin zone and band
→˓structure"""
import pybinding as pb
import matplotlib.pyplot as plt
from math import sqrt, pi

pb.pltutils.use_style()

def monolayer_graphene():
"""Return the lattice specification for monolayer graphene"""
a = 0.24595 # [nm] unit cell length
a_cc = 0.142 # [nm] carbon-carbon distance
t = -2.8 # [eV] nearest neighbour hopping

create a lattice with 2 primitive vectors
lat = pb.Lattice(

a1=[a, 0],
a2=[a/2, a/2 * sqrt(3)]

)

lat.add_sublattices(
name and position

124 Chapter 11. Random Examples

Pybinding User Guide, Release 0.9.4

('A', [0, -a_cc/2]),
('B', [0, a_cc/2])

)

lat.add_hoppings(
inside the main cell
([0, 0], 'A', 'B', t),
between neighboring cells
([1, -1], 'A', 'B', t),
([0, -1], 'A', 'B', t)

)

return lat

lattice = monolayer_graphene()
lattice.plot()
plt.show()

-0.2 -0.1 0.0 0.1 0.2
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

a1

a2

A

B

[1, -1]

[-1, 1]

[0, -1]

[0, 1]

lattice.plot_brillouin_zone()
plt.show()

-20 -10 0 10 20
kx(nm 1)

-20

-10

0

10

20

k y
(n

m
1)

b1

b2

[-2.7 , -4.7] [2.7 , -4.7]

[5.4 , 0]

[2.7 , 4.7][-2.7 , 4.7]

[-5.4 , 0]

model = pb.Model(monolayer_graphene(), pb.translational_symmetry())
solver = pb.solver.lapack(model)

a_cc = 0.142

11.1. Lattice specification and bands 125

Pybinding User Guide, Release 0.9.4

Gamma = [0, 0]
K1 = [-4*pi / (3*sqrt(3)*a_cc), 0]
M = [0, 2*pi / (3*a_cc)]
K2 = [2*pi / (3*sqrt(3)*a_cc), 2*pi / (3*a_cc)]

bands = solver.calc_bands(K1, Gamma, M, K2)
bands.plot(point_labels=['K', r'Γ', 'M', 'K'])
plt.show()

K M K
k-space

-10

-5

0

5

10

E
(e

V)

model.lattice.plot_brillouin_zone(decorate=False)
bands.plot_kpath(point_labels=['K', r'Γ', 'M', 'K'])

-20 -10 0 10 20
kx(nm 1)

-20

-10

0

10

20

k y
(n

m
1)

K

M K

Monolayer graphene NN

Source code

"""Monolayer graphene with next-nearest hoppings"""
import pybinding as pb
import matplotlib.pyplot as plt
from math import sqrt, pi

pb.pltutils.use_style()

def monolayer_graphene_nn():

126 Chapter 11. Random Examples

Pybinding User Guide, Release 0.9.4

a = 0.24595 # [nm] unit cell length
a_cc = 0.142 # [nm] carbon-carbon distance
t = -2.8 # [eV] nearest neighbour hopping
t_nn = 0.25 # [eV] next-nearest neighbour hopping

lat = pb.Lattice(
a1=[a, 0],
a2=[a/2, a/2 * sqrt(3)]

)
lat.add_sublattices(

('A', [0, -a_cc/2]),
('B', [0, a_cc/2])

)
lat.add_hoppings(

between A and B inside the main cell
([0, 0], 'A', 'B', t),
between neighboring cells
([1, -1], 'A', 'B', t),
([0, -1], 'A', 'B', t),
next-nearest
([1, 0], 'A', 'A', t_nn),
([1, 0], 'B', 'B', t_nn),
([0, 1], 'A', 'A', t_nn),
([0, 1], 'B', 'B', t_nn),
([1, -1], 'A', 'A', t_nn),
([1, -1], 'B', 'B', t_nn)

)
return lat

lattice = monolayer_graphene_nn()
lattice.plot()
plt.show()

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

a1

a2

A

B

[1, 0][-1, 0] [1, 0][-1, 0]

[0, 1]

[0, -1]

[0, 1]

[0, -1] [1, -1]

[-1, 1]

[1, -1]

[-1, 1]

[1, -1]

[-1, 1]

[0, -1]

[0, 1]

lattice.plot_brillouin_zone()
plt.show()

11.1. Lattice specification and bands 127

Pybinding User Guide, Release 0.9.4

-20 -10 0 10 20
kx(nm 1)

-20

-10

0

10

20

k y
(n

m
1)

b1

b2

[-2.7 , -4.7] [2.7 , -4.7]

[5.4 , 0]

[2.7 , 4.7][-2.7 , 4.7]

[-5.4 , 0]

model = pb.Model(monolayer_graphene_nn(), pb.translational_symmetry())
solver = pb.solver.lapack(model)

a_cc = 0.142
Gamma = [0, 0]
K1 = [-4*pi / (3*sqrt(3)*a_cc), 0]
M = [0, 2*pi / (3*a_cc)]
K2 = [2*pi / (3*sqrt(3)*a_cc), 2*pi / (3*a_cc)]

Note the elector-hole asymmetry in the band structure (due to t_nn).
bands = solver.calc_bands(K1, Gamma, M, K2)
bands.plot(point_labels=['K', r'Γ', 'M', 'K'])
plt.show()

K M K
k-space

-5

0

5

10

E
(e

V)

Bilayer graphene

Source code

"""Build the simplest model of bilayer graphene and compute its band structure"""
import pybinding as pb
import matplotlib.pyplot as plt
from math import sqrt, pi

pb.pltutils.use_style()

128 Chapter 11. Random Examples

Pybinding User Guide, Release 0.9.4

def bilayer_graphene():
"""Bilayer lattice in the AB-stacked form (Bernal-stacked)

This is the simplest model with just a single intralayer and a single
→˓interlayer hopping.

"""
a = 0.24595 # [nm] unit cell length
a_cc = 0.142 # [nm] carbon-carbon distance
c0 = 0.335 # [nm] interlayer spacing

lat = pb.Lattice(a1=[a/2, a/2 * sqrt(3)], a2=[a/2, -a/2 * sqrt(3)])

lat.add_sublattices(
('A1', [0, -a_cc/2, 0]),
('B1', [0, a_cc/2, 0]),
('A2', [0, a_cc/2, -c0]),
('B2', [0, 3*a_cc/2, -c0])

)

lat.register_hopping_energies({
'gamma0': -2.8, # [eV] intralayer
'gamma1': -0.4, # [eV] interlayer

})

lat.add_hoppings(
layer 1
([0, 0], 'A1', 'B1', 'gamma0'),
([0, 1], 'A1', 'B1', 'gamma0'),
([-1, 0], 'A1', 'B1', 'gamma0'),
layer 2
([0, 0], 'A2', 'B2', 'gamma0'),
([0, 1], 'A2', 'B2', 'gamma0'),
([-1, 0], 'A2', 'B2', 'gamma0'),
interlayer
([0, 0], 'B1', 'A2', 'gamma1')

)

return lat

lattice = bilayer_graphene()
lattice.plot()
plt.show()

-0.2 -0.1 0.0 0.1 0.2
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

y
(n

m
) a1

a2

B1

B2

A1

[0, 1]

[0, -1]

[-1, 0]

[1, 0]

[0, 1]

[0, -1]

[-1, 0]

[1, 0]

11.1. Lattice specification and bands 129

Pybinding User Guide, Release 0.9.4

lattice.plot_brillouin_zone()
plt.show()

-20 -10 0 10 20
kx(nm 1)

-20

-10

0

10

20

k y
(n

m
1)

b1

b2

[-2.7 , -4.7] [2.7 , -4.7]

[5.4 , 0]

[2.7 , 4.7][-2.7 , 4.7]

[-5.4 , 0]

model = pb.Model(bilayer_graphene(), pb.translational_symmetry())
solver = pb.solver.lapack(model)

a_cc = 0.142
Gamma = [0, 0]
K1 = [-4*pi / (3*sqrt(3)*a_cc), 0]
M = [0, 2*pi / (3*a_cc)]
K2 = [2*pi / (3*sqrt(3)*a_cc), 2*pi / (3*a_cc)]

bands = solver.calc_bands(K1, Gamma, M, K2)
bands.plot(point_labels=['K', r'Γ', 'M', 'K'])
plt.show()

K M K
k-space

-10

-5

0

5

10

E
(e

V)

Phosphorene

Source code

"""Create and plot a phosphorene lattice, its Brillouin zone and band structure"""
import pybinding as pb
import matplotlib.pyplot as plt
from math import pi, sin, cos

130 Chapter 11. Random Examples

Pybinding User Guide, Release 0.9.4

pb.pltutils.use_style()

def phosphorene_4band():
"""Monolayer phosphorene lattice using the four-band model"""
a = 0.222
ax = 0.438
ay = 0.332
theta = 96.79 * (pi / 180)
phi = 103.69 * (pi / 180)

lat = pb.Lattice(a1=[ax, 0], a2=[0, ay])

h = a * sin(phi - pi / 2)
s = 0.5 * ax - a * cos(theta / 2)
lat.add_sublattices(

('A', [-s/2, -ay/2, h], 0),
('B', [s/2, -ay/2, 0], 0),
('C', [-s/2 + ax/2, 0, 0], 0),
('D', [s/2 + ax/2, 0, h], 0)

)

lat.register_hopping_energies({
't1': -1.22,
't2': 3.665,
't3': -0.205,
't4': -0.105,
't5': -0.055

})

lat.add_hoppings(
t1
([-1, 0], 'A', 'D', 't1'),
([-1, -1], 'A', 'D', 't1'),
([0, 0], 'B', 'C', 't1'),
([0, -1], 'B', 'C', 't1'),
t2
([0, 0], 'A', 'B', 't2'),
([0, 0], 'C', 'D', 't2'),
t3
([0, 0], 'A', 'D', 't3'),
([0, -1], 'A', 'D', 't3'),
([1, 1], 'C', 'B', 't3'),
([1, 0], 'C', 'B', 't3'),
t4
([0, 0], 'A', 'C', 't4'),
([0, -1], 'A', 'C', 't4'),
([-1, 0], 'A', 'C', 't4'),
([-1, -1], 'A', 'C', 't4'),
([0, 0], 'B', 'D', 't4'),
([0, -1], 'B', 'D', 't4'),
([-1, 0], 'B', 'D', 't4'),
([-1, -1], 'B', 'D', 't4'),
t5
([-1, 0], 'A', 'B', 't5'),
([-1, 0], 'C', 'D', 't5')

)

return lat

plt.figure(figsize=(6, 6))
lattice = phosphorene_4band()
lattice.plot()

11.1. Lattice specification and bands 131

Pybinding User Guide, Release 0.9.4

plt.show()

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

y
(n

m
)

a1

a2

C

A B

D

[-1, 0] [1, 0]

[-1, -1]

[1, 1]

[0, -1]

[0, 1]

[0, -1]

[0, 1] [1, 1]

[-1, -1]

[1, 0][-1, 0]

[0, -1]

[0, 1]

[-1, 0] [1, 0]

[-1, -1]

[1, 1]

[0, -1]

[0, 1]

[-1, 0] [1, 0]

[-1, -1]

[1, 1]

[-1, 0] [1, 0][-1, 0] [1, 0]

lattice.plot_brillouin_zone()
plt.show()

-10 -5 0 5 10
kx(nm 1)

-10

-5

0

5

10

k y
(n

m
1)

b1

b2

[-2.3 , -3] [2.3 , -3]

[2.3 , 3][-2.3 , 3]

model = pb.Model(phosphorene_4band(), pb.translational_symmetry())
solver = pb.solver.lapack(model)

ax = 0.438
ay = 0.332
kx = pi / ax
ky = pi / ay
bands = solver.calc_bands([kx, ky], [kx, 0], [0, 0], [0, ky], [kx, ky])
bands.plot(point_labels=["S", "Y", r"Γ", "X", "S"])
plt.show()

132 Chapter 11. Random Examples

Pybinding User Guide, Release 0.9.4

S Y X S
k-space

-5

0

5

E
(e

V)

model.lattice.plot_brillouin_zone(decorate=False)
bands.plot_kpath(point_labels=["S", "Y", r"Γ", "X", "S"])
plt.show()

-10 -5 0 5 10
kx(nm 1)

-10

-5

0

5

10

k y
(n

m
1)

S

Y

X S

Finite size

See the tutorial page for a detailed walkthrough of system construction. These are just a few quick examples.

1D lattices and line shape

Source code

"""1D lattice chains - finite dimension are imposed using builtin `pb.line` shape""
→˓"
import pybinding as pb
import matplotlib.pyplot as plt

pb.pltutils.use_style()

def simple_chain_lattice(a=1, t=-1):
"""Very simple 1D lattice"""
lat = pb.Lattice(a)

11.2. Finite size 133

Pybinding User Guide, Release 0.9.4

lat.add_one_sublattice('A', [0, 0])
lat.add_one_hopping(1, 'A', 'A', t)
return lat

model = pb.Model(
simple_chain_lattice(),
pb.line(-3.5, 3.5) # line start/end in nanometers

)
model.plot()
plt.show()

-4 -3 -2 -1 0 1 2 3 4
x (nm)

-0.5
0.0
0.5

y
(n

m
)

def trestle(a=0.2, t1=0.8 + 0.6j, t2=2):
"""A more complicated 1D lattice with 2 sublattices"""
lat = pb.Lattice(1.3 * a)
lat.add_sublattices(

('A', [0, 0], 0),
('B', [a/2, a], 0)

)
lat.add_hoppings(

(0, 'A', 'B', t1),
(1, 'A', 'B', t1),
(1, 'A', 'A', t2),
(1, 'B', 'B', t2)

)
lat.min_neighbors = 2
return lat

model = pb.Model(trestle(), pb.line(-0.7, 0.7))
model.plot()
plt.show()

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.1
0.0
0.1
0.2
0.3

y
(n

m
)

2D lattices and builtin shapes

Source code

"""Several finite-sized systems created using builtin lattices and shapes"""
import pybinding as pb
from pybinding.repository import graphene
import matplotlib.pyplot as plt
from math import pi

134 Chapter 11. Random Examples

Pybinding User Guide, Release 0.9.4

pb.pltutils.use_style()

model = pb.Model(
graphene.monolayer(),
pb.rectangle(x=2, y=1.2)

)
model.plot()
plt.show()

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
(n

m
)

model = pb.Model(
graphene.monolayer(),
pb.regular_polygon(num_sides=6, radius=1.4, angle=pi/6)

)
model.plot()
plt.show()

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y
(n

m
)

A graphene-specific shape which guaranties armchair edges on all sides
model = pb.Model(

graphene.bilayer(),
graphene.hexagon_ac(side_width=1)

)
model.plot()
plt.show()

11.2. Finite size 135

Pybinding User Guide, Release 0.9.4

-1.0 -0.5 0.0 0.5 1.0
x (nm)

-1.0

-0.5

0.0

0.5

1.0
y

(n
m

)

Nanoribbons

See the Shape and symmetry tutorial page for more details on nanoribbon construction. These are just a few quick
examples.

Bilayer graphene

Source code

"""Bilayer graphene nanoribbon with zigzag edges"""
import pybinding as pb
import matplotlib.pyplot as plt
from pybinding.repository import graphene
from math import pi, sqrt

pb.pltutils.use_style()

def bilayer_graphene():
"""Bilayer lattice in the AB-stacked form (Bernal-stacked)"""
lat = pb.Lattice(a1=[graphene.a, 0], a2=[0.5*graphene.a, 0.5*sqrt(3)*graphene.

→˓a])

c0 = 0.335 # [nm] interlayer spacing
lat.add_sublattices(('A1', [0, -graphene.a_cc/2, 0]),

('B1', [0, graphene.a_cc/2, 0]),
('A2', [0, graphene.a_cc/2, -c0]),
('B2', [0, 3*graphene.a_cc/2, -c0]))

lat.register_hopping_energies({'t': graphene.t, 't_layer': -0.4})
lat.add_hoppings(

layer 1
([0, 0], 'A1', 'B1', 't'),
([1, -1], 'A1', 'B1', 't'),
([0, -1], 'A1', 'B1', 't'),
layer 2
([0, 0], 'A2', 'B2', 't'),
([1, -1], 'A2', 'B2', 't'),
([0, -1], 'A2', 'B2', 't'),
interlayer
([0, 0], 'B1', 'A2', 't_layer')

)

136 Chapter 11. Random Examples

Pybinding User Guide, Release 0.9.4

lat.min_neighbors = 2
return lat

model = pb.Model(
bilayer_graphene(),
pb.rectangle(1.3), # nm
pb.translational_symmetry(a1=True, a2=False)

)
model.plot()
model.lattice.plot_vectors(position=[-0.6, 0.3]) # nm
plt.show()

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
(n

m
)

a1

a2

solver = pb.solver.lapack(model)
bands = solver.calc_bands(-pi/graphene.a, pi/graphene.a)
bands.plot(point_labels=[r"$-\pi / a$", r"π / a"])
plt.show()

/a /a
k-space

-10

-5

0

5

10

E
(e

V)

11.3. Nanoribbons 137

Pybinding User Guide, Release 0.9.4

138 Chapter 11. Random Examples

CHAPTER 12

Material Repository

The repository includes a few common lattices, shapes, fields and other kinds of helpful functions and constants.
A material can be imported from pybinding.repository, for example:

from pybinding.repository import graphene

lattice = graphene.monolayer()

Or:

from pybinding.repository import phosphorene

lattice = phosphorene.monolayer_4band()

Graphene

Lattices

monolayer(nearest_neighbors=1, onsite=(0, 0), **kwargs)
Monolayer graphene lattice up to nearest_neighbors hoppings

Parameters nearest_neighbors : int

Number of nearest neighbors to consider.

onsite : Tuple[float, float]

Onsite energy for sublattices A and B.

**kwargs

Specify the hopping parameters t, t_nn and t_nnn. If not given, the default
values from graphene.constants will be used.

139

Pybinding User Guide, Release 0.9.4

-0.2 -0.1 0.0 0.1 0.2
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3
y

(n
m

)

a1

a2

A

B

[1, -1]

[-1, 1]

[0, -1]

[0, 1]

monolayer(nearest_neighbors=1)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

a1

a2

A

B

[0, -1]

[0, 1]

[0, -1]

[0, 1]

[1, -1]

[-1, 1]

[1, -1]

[-1, 1]

[1, 0][-1, 0] [1, 0][-1, 0]

[1, -1]

[-1, 1]

[0, -1]

[0, 1]

monolayer(nearest_neighbors=2)

140 Chapter 12. Material Repository

Pybinding User Guide, Release 0.9.4

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
y

(n
m

)

a1

a2

A

B

[1, -2]

[-1, 2]

[1, 0][-1, 0][-1, 0] [1, 0]

[0, -1]

[0, 1]

[0, -1]

[0, 1]

[1, -1]

[-1, 1]

[1, -1]

[-1, 1]

[1, 0][-1, 0] [1, 0][-1, 0]

[1, -1]

[-1, 1]

[0, -1]

[0, 1]

monolayer(nearest_neighbors=3)

monolayer_4atom(onsite=(0, 0))
Nearest-neighbor with 4 atoms per unit cell: square lattice instead of oblique

Parameters onsite : Tuple[float, float]

Onsite energy for sublattices A and B.

12.1. Graphene 141

Pybinding User Guide, Release 0.9.4

-0.4 -0.2 0.0 0.2 0.4
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
y

(n
m

)

a1

a2

A2

A

B

B2

[-1, -1]

[1, 1]

[0, -1]

[0, 1]

[-1, 0] [1, 0]

bilayer(gamma3=False, gamma4=False, onsite=(0, 0, 0, 0))
Bilayer lattice in the AB-stacked form (Bernal-stacked)

•𝛾0 is the single-layer hopping within the top layer (A1/B1) and bottom layer (A2/B2)

•𝛾1 is the inter-layer hopping between B1 and A2 (where atom B1 lies directly over A2)

•Hoppings 𝛾3 and 𝛾4 are optional (see parameters)

Parameters gamma3, gamma4 : bool

Enable 𝛾3 and/or 𝛾4 hoppings. By default, only 𝛾0 and 𝛾1 are active.

onsite : Tuple[float, float, float, float]

Onsite energy for A1, B1, A2, B2

142 Chapter 12. Material Repository

Pybinding User Guide, Release 0.9.4

-0.2 -0.1 0.0 0.1 0.2
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5
y

(n
m

)

a1a2

B1

B2

A1

[0, -1]

[0, 1]

[-1, 0]

[1, 0]

[0, -1]

[0, 1]

[-1, 0]

[1, 0]

Constants

a = 0.24595
[nm] unit cell length

a_cc = 0.142
[nm] carbon-carbon distance

beta = 3.37
strain hopping modulation

t = -2.8
[eV] nearest neighbor hopping

t_nn = 0.1
[eV] next-nearest neighbor hopping

vf = 906091185689731.9
[nm/s] Fermi velocity

Shapes

hexagon_ac(side_width, lattice_offset=(-0.122975, 0))
A graphene-specific shape which guaranties armchair edges on all sides

Parameters side_width : float

Hexagon side width. It may be adjusted slightly to ensure armchair edges.

lattice_offset : array_like

Offset the lattice so a carbon hexagon is at the center of the shape. The default
value is specific for monolayer() and bilayer() lattices from this material
repository.

Modifiers

mass_term(delta)
Break sublattice symmetry, make massive Dirac electrons, open a band gap

12.1. Graphene 143

Pybinding User Guide, Release 0.9.4

Only for monolayer graphene.

Parameters delta : float

Onsite energy +delta is added to sublattice ‘A’ and -delta to ‘B’.

coulomb_potential(beta, cutoff_radius=0.0, offset=(0, 0, 0))
A Coulomb potential created by an impurity in graphene

Parameters beta : float

Charge of the impurity [unitless].

cutoff_radius : float

Cut off the potential below this radius [nm].

offset: array_like

Position of the charge.

constant_magnetic_field(magnitude)
Constant magnetic field in the z-direction, perpendicular to the graphene plane

Parameters magnitude : float

In units of Tesla.

triaxial_strain(magnetic_field)
Triaxial strain corresponding to a homogeneous pseudo-magnetic field

Parameters magnetic_field : float

Intensity of the pseudo-magnetic field to induce.

gaussian_bump(height, sigma, center=(0, 0))
Gaussian bump deformation

Parameters height : float

Height of the bump [nm].

sigma : float

Gaussian sigma parameter: controls the width of the bump [nm].

center : array_like

Position of the center of the bump.

Phosphorene

monolayer_4band(num_hoppings=5)
Monolayer phosphorene lattice using the four-band model

Parameters num_hoppings : int

Number of hopping terms to consider: from t2 to t5.

144 Chapter 12. Material Repository

Pybinding User Guide, Release 0.9.4

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

y
(n

m
) a1

a2

C

A B

D

[-1, 0] [1, 0]

[-1, -1]

[1, 1]

[0, -1]

[0, 1]

monolayer_4band(num_hoppings=2)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x (nm)

-0.6

-0.4

-0.2

0.0

0.2

y
(n

m
) a1

a2

C

A B

D

[-1, 0] [1, 0]

[-1, -1]

[1, 1]

[0, -1]

[0, 1]

[0, -1]

[0, 1] [1, 1]

[-1, -1]

[1, 0][-1, 0]

[0, -1]

[0, 1]

[-1, 0] [1, 0]

[-1, -1]

[1, 1]

[0, -1]

[0, 1]

[-1, 0] [1, 0]

[-1, -1]

[1, 1]

[-1, 0] [1, 0][-1, 0] [1, 0]

monolayer_4band(num_hoppings=5)

Group 6 TMDs

Tight-binding models for group 6 transition metal dichalcogenides (TMD).

monolayer_3band(name, override_params=None)
Monolayer of a group 6 TMD using the nearest-neighbor 3-band model

Parameters name : str

Name of the TMD to model. The available options are: MoS2, WS2, MoSe2,
WSe2, MoTe2, WTe2. The relevant tight-binding parameters for these materials
are given by https://doi.org/10.1103/PhysRevB.88.085433.

12.3. Group 6 TMDs 145

https://doi.org/10.1103/PhysRevB.88.085433

Pybinding User Guide, Release 0.9.4

override_params : Optional[dict]

Replace or add new material parameters. The dictionary entries must be in the for-
mat "name": [a, eps1, eps2, t0, t1, t2, t11, t12, t22].

Examples

from pybinding.repository import group6_tmd

group6_tmd.monolayer_3band("MoS2").plot()

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
x (nm)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y
(n

m
)

a1

a2

Mo

[0, -1]

[0, 1]

[1, -1]

[-1, 1]

[1, 0][-1, 0]

model = pb.Model(group6_tmd.monolayer_3band("MoS2"), pb.translational_
→˓symmetry())
solver = pb.solver.lapack(model)

k_points = model.lattice.brillouin_zone()
gamma = [0, 0]
k = k_points[0]
m = (k_points[0] + k_points[1]) / 2

plt.figure(figsize=(6.7, 2.3))

plt.subplot(121, title="MoS2 3-band model band structure")
bands = solver.calc_bands(gamma, k, m, gamma)
bands.plot(point_labels=[r"Γ", "K", "M", r"Γ"])

plt.subplot(122, title="Band structure path in reciprocal space")
model.lattice.plot_brillouin_zone(decorate=False)
bands.plot_kpath(point_labels=[r"Γ", "K", "M", r"Γ"])

146 Chapter 12. Material Repository

Pybinding User Guide, Release 0.9.4

K M
k-space

-1

0

1

2

3
E

(e
V)

MoS2 3-band model band structure

-15 -10 -5 0 5 10 15
kx(nm 1)

-15

-10

-5

0

5

10

15

k y
(n

m
1)

K M

Band structure path in reciprocal space

grid = plt.GridSpec(3, 2, hspace=0.4)
plt.figure(figsize=(6.7, 8))

for square, name in zip(grid, ["MoS2", "WS2", "MoSe2", "WSe2", "MoTe2", "WTe2
→˓"]):

model = pb.Model(group6_tmd.monolayer_3band(name), pb.translational_
→˓symmetry())

solver = pb.solver.lapack(model)

k_points = model.lattice.brillouin_zone()
gamma = [0, 0]
k = k_points[0]
m = (k_points[0] + k_points[1]) / 2

plt.subplot(square, title=name)
bands = solver.calc_bands(gamma, k, m, gamma)
bands.plot(point_labels=[r"Γ", "K", "M", r"Γ"], lw=1.5)

12.3. Group 6 TMDs 147

Pybinding User Guide, Release 0.9.4

K M
k-space

-1

0

1

2

3

4
E

(e
V)

MoS2

K M
k-space

-1

0

1

2

3

4

E
(e

V)

WS2

K M
k-space

0

1

2

3

E
(e

V)

MoSe2

K M
k-space

-1

0

1

2

3

4

E
(e

V)

WSe2

K M
k-space

0

1

2

3

E
(e

V)

MoTe2

K M
k-space

0

1

2

3

E
(e

V)

WTe2

148 Chapter 12. Material Repository

CHAPTER 13

API Reference

This detailed reference lists all the classes and functions contained in the package. If you are just looking to get
started, read the Tutorial first.

The Lattice describes the unit cell of a crystal, while the Model is used to build up a larger system by trans-
lating the unit cell to fill a certain shape or symmetry. The model builds the Hamiltonian matrix by applying fields
and other modifier parameters.

Lattice(a1[, a2, a3]) Unit cell of a Bravais lattice, the basic building block of
a tight-binding model

Model(lattice, *args) Builds a Hamiltonian from lattice, shape, symmetry and
modifier parameters

Lattice

class Lattice(a1, a2=None, a3=None)
Unit cell of a Bravais lattice, the basic building block of a tight-binding model

This class describes the primitive vectors, positions of sublattice sites and hopping parameters which con-
nect those sites. All of this structural information is used to build up a larger system by translation.

A few prebuilt lattices are available in the Material Repository.

Parameters a1, a2, a3 : array_like

Primitive vectors of a Bravais lattice. A valid lattice must have at least one primitive
vector (a1), thus forming a simple 1-dimensional lattice. If a2 is also specified, a
2D lattice is created. Passing values for all three vectors will create a 3D lattice.

Attributes

hoppings Dict of names and HoppingFamily
min_neighbors Minimum number of neighbours required at each lat-

tice site
Continued on next page

149

Pybinding User Guide, Release 0.9.4

Table 13.2 – continued from previous page
ndim The dimensionality of the lattice: number of primitive

vectors
nhop Number of hopping families
nsub Number of sublattices
offset Global lattice offset: sublattice offsets are defined rel-

ative to this
sublattices Dict of names and Sublattice
vectors Primitive lattice vectors

Methods

add_aliases(*aliases) Add multiple new aliases
add_hoppings(*hoppings) Add multiple new hoppings
add_one_alias(name, original, position) Add a sublattice alias - useful for creating supercells
add_one_hopping(relative_index, from_sub, ...) Add a new hopping
add_one_sublattice(name, position[, ...]) Add a new sublattice
add_sublattices(*sublattices) Add multiple new sublattices
brillouin_zone() Return a list of vertices which form the Brillouin zone

(1D and 2D only)
plot([axes, vector_position]) Illustrate the lattice by plotting the primitive cell and

its nearest neighbors
plot_brillouin_zone([decorate]) Plot the Brillouin zone and reciprocal lattice vectors
plot_vectors(position[, scale]) Plot lattice vectors in the xy plane
reciprocal_vectors() Calculate the reciprocal space lattice vectors
register_hopping_energies(mapping) Register a mapping of user-friendly names to hopping

energies
site_radius_for_plot([max_fraction]) Return a good estimate for the lattice site radius for

plotting
with_min_neighbors(number) Return a copy of this lattice with a different minimum

neighbor count
with_offset(position) Return a copy of this lattice with a different offset

add_aliases(*aliases)
Add multiple new aliases

Parameters *aliases

Each element should be a tuple containing the arguments for add_one_alias().
Works just like add_sublattices().

add_hoppings(*hoppings)
Add multiple new hoppings

Parameters *hoppings

Each element should be a tuple containing the arguments for a
add_one_hopping() method call. See example.

Examples

These three calls:

lattice.add_one_hopping([0, 0], 'a', 'b', 0.8)
lattice.add_one_hopping([0, 1], 'a', 'a', 0.3)
lattice.add_one_hopping([1, 1], 'a', 'b', 0.8)

150 Chapter 13. API Reference

Pybinding User Guide, Release 0.9.4

Can be replaced with a single call to:

lattice.add_hoppings(
([0, 0], 'a', 'b', 0.8),
([0, 1], 'a', 'a', 0.3),
([1, 1], 'a', 'b', 0.8),

)

add_one_alias(name, original, position)
Add a sublattice alias - useful for creating supercells

Create a new sublattice called name with the same properties as original (same onsite energy)
but with at a different position. The new name is only used during lattice construction and the
originalwill be used for the final system and Hamiltonian. This is useful when defining a supercell
which contains multiple sites of one sublattice family at different positions.

Parameters name : str

User-friendly identifier of the alias.

original : str

Name of the original sublattice. It must already exist.

position : array_like

Cartesian position with respect to the origin. Usually different than the original.

add_one_hopping(relative_index, from_sub, to_sub, hop_name_or_energy)
Add a new hopping

For each new hopping, its Hermitian conjugate is added automatically. Doing so manually, i.e. adding
a hopping which is the Hermitian conjugate of an existing one, will result in an exception being raised.

Parameters relative_index : array_like of int

Difference of the indices of the source and destination unit cells.

from_sub : str

Name of the sublattice in the source unit cell.

to_sub : str

Name of the sublattice in the destination unit cell.

hop_name_or_energy : float or str

The numeric value of the hopping energy or the name of a previously registered
hopping.

add_one_sublattice(name, position, onsite_energy=0.0, alias=’‘)
Add a new sublattice

Parameters name : str

User-friendly identifier. The unique sublattice ID can later be accessed via this
sublattice name as lattice[sublattice_name].

position : array_like

Cartesian position with respect to the origin.

onsite_energy : float

Onsite energy to be applied only to sites of this sublattice.

alias : str

Deprecated: Use add_one_alias() instead.

13.1. Lattice 151

Pybinding User Guide, Release 0.9.4

add_sublattices(*sublattices)
Add multiple new sublattices

Parameters *sublattices

Each element should be a tuple containing the arguments for a
add_one_sublattice() method call. See example.

Examples

These three calls:

lattice.add_one_sublattice('a', [0, 0], 0.5)
lattice.add_one_sublattice('b', [0, 1], 0.0)
lattice.add_one_sublattice('c', [1, 0], 0.3)

Can be replaced with a single call to:

lattice.add_sublattices(
('a', [0, 0], 0.5),
('b', [0, 1], 0.0),
('c', [1, 0], 0.3)

)

brillouin_zone()
Return a list of vertices which form the Brillouin zone (1D and 2D only)

Returns List[array_like]

Examples

>>> lat_1d = Lattice(a1=1)
>>> np.allclose(lat_1d.brillouin_zone(), [-pi, pi])
True
>>> lat_2d = Lattice(a1=[0, 1], a2=[0.5, 0.5])
>>> np.allclose(lat_2d.brillouin_zone(), [[0, -2*pi], [2*pi, 0], [0, 2*pi],
→˓ [-2*pi, 0]])
True

plot(axes=’xy’, vector_position=’center’, **kwargs)
Illustrate the lattice by plotting the primitive cell and its nearest neighbors

Parameters axes : str

The spatial axes to plot. E.g. ‘xy’, ‘yz’, etc.

vector_position : array_like or ‘center’

Cartesian position to be used as the origin for the lattice vectors. By default the
origin is placed in the center of the primitive cell.

**kwargs

Forwarded to System.plot().

plot_brillouin_zone(decorate=True, **kwargs)
Plot the Brillouin zone and reciprocal lattice vectors

Parameters decorate : bool

Label the vertices of the Brillouin zone and show the reciprocal vectors

**kwargs

152 Chapter 13. API Reference

Pybinding User Guide, Release 0.9.4

Forwarded to plt.plot().

plot_vectors(position, scale=1.0)
Plot lattice vectors in the xy plane

Parameters position : array_like

Cartesian position to be used as the origin for the vectors.

scale : float

Multiply the length of the vectors by this number.

reciprocal_vectors()
Calculate the reciprocal space lattice vectors

Returns list

Examples

>>> lat = Lattice(a1=[0, 1], a2=[0.5, 0.5])
>>> np.allclose(lat.reciprocal_vectors(), [[4*pi, 0, 0], [-2*pi, 2*pi, 0]])
True

register_hopping_energies(mapping)
Register a mapping of user-friendly names to hopping energies

Parameters mapping : dict

Keys are user-friendly hopping names and values are the numeric values of the
hopping energy.

site_radius_for_plot(max_fraction=0.33)
Return a good estimate for the lattice site radius for plotting

Calculated heuristically base on the length (1D) or area (2D) of the unit cell. In order to prevent
overlap between sites, if the computed radius is too large, it will be clamped to a fraction of the
shortest inter-atomic spacing.

Parameters max_fraction : float

Set the upper limit of the calculated radius as this fraction of the shortest inter-
atomic spacing in the lattice unit cell. Should be less than 0.5 to avoid overlap
between neighboring lattice sites.

Returns float

with_min_neighbors(number)
Return a copy of this lattice with a different minimum neighbor count

Parameters number : int

The minimum number of neighbors.

Returns Lattice

with_offset(position)
Return a copy of this lattice with a different offset

It must be within half the length of a primitive lattice vector

Parameters position : array_like

Cartesian offset in the same length unit as the lattice vectors.

Returns Lattice

hoppings
Dict of names and HoppingFamily

13.1. Lattice 153

Pybinding User Guide, Release 0.9.4

min_neighbors
Minimum number of neighbours required at each lattice site

When constructing a finite-sized system, lattice sites with less neighbors than this minimum will be
considered as “dangling” and they will be removed.

ndim
The dimensionality of the lattice: number of primitive vectors

nhop
Number of hopping families

nsub
Number of sublattices

offset
Global lattice offset: sublattice offsets are defined relative to this

It must be within half the length of a primitive lattice vector.

sublattices
Dict of names and Sublattice

vectors
Primitive lattice vectors

Model

class Model(lattice, *args)
Builds a Hamiltonian from lattice, shape, symmetry and modifier parameters

The most important attributes are system and hamiltonian which are constructed based on the input
parameters. The System contains structural data like site positions. The tight-binding Hamiltonian is a
sparse matrix in the scipy.sparse.csr_matrix format.

Parameters lattice : Lattice

The lattice specification.

*args

Can be any of: shape, symmetry or various modifiers. Note that:

• There can be at most one shape and at most one symmetry. Shape and symmetry
can be composed as desired, but physically impossible scenarios will result in an
empty system.

• Any number of modifiers can be added. Adding the same modifier more than
once is allowed: this will usually multiply the modifier’s effect.

Attributes

hamiltonian Hamiltonian sparse matrix in the scipy.sparse.
csr_matrix format

lattice Lattice specification
leads List of Lead objects
modifiers List of all modifiers applied to this model
onsite_map StructureMap of the onsite energy
shape Polygon or FreeformShape object
system Structural data like site positions and hoppings, see

System for details

154 Chapter 13. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix

Pybinding User Guide, Release 0.9.4

Methods

add(*args) Add parameter(s) to the model
attach_lead(direction, contact) Attach a lead to the main system
eval()
plot([num_periods, lead_length, axes]) Plot the structure of the model: sites, hoppings,

boundaries and leads
report() Return a string with information about the last build
set_wave_vector(k: numpy.ndarray) Set the wave vector for periodic models
structure_map(data) Return a StructureMap of the model system

mapped to the specified data
tokwant() Convert this model into kwant format (finalized)

add(*args)
Add parameter(s) to the model

Parameters *args

Any of: shape, symmetry, modifiers. Tuples and lists of parameters are expanded
automatically, so M.add(p0, [p1, p2]) is equivalent to M.add(p0, p1,
p2).

attach_lead(direction, contact)
Attach a lead to the main system

Not valid for 1D lattices.

Parameters direction : int

Lattice vector direction of the lead. Must be one of: 1, 2, 3, -1, -2, -3. For example,
direction=2 would create a lead which intersects the main system in the 𝑎2 lat-
tice vector direction. Setting direction=-2 would create a lead on the opposite
side of the system, but along the same lattice vector.

contact : Shape

The place where the lead should contact the main system. For a 2D lattice it’s just
a line() describing the intersection of the lead and the system. For a 3D lattice
it’s the area described by a 2D FreeformShape.

eval()

plot(num_periods=1, lead_length=6, axes=’xy’, **kwargs)
Plot the structure of the model: sites, hoppings, boundaries and leads

Parameters num_periods : int

Number of times to repeat the periodic boundaries.

lead_length : int

Number of times to repeat the lead structure.

axes : str

The spatial axes to plot. E.g. ‘xy’, ‘yz’, etc.

**kwargs

Additional plot arguments as specified in structure_plot_properties().

report()
Return a string with information about the last build

set_wave_vector(k: numpy.ndarray)
Set the wave vector for periodic models

13.2. Model 155

http://kwant-project.org/

Pybinding User Guide, Release 0.9.4

Parameters k : array_like

Wave vector in reciprocal space.

structure_map(data)
Return a StructureMap of the model system mapped to the specified data

Parameters data : Optional[array_like]

Data array to map to site positions.

Returns StructureMap

tokwant()
Convert this model into kwant format (finalized)

This is intended for compatibility with the kwant package: http://kwant-project.org/.

Returns kwant.system.System

Finalized system which can be used with kwant compute functions.

hamiltonian
Hamiltonian sparse matrix in the scipy.sparse.csr_matrix format

lattice
Lattice specification

leads
List of Lead objects

modifiers
List of all modifiers applied to this model

onsite_map
StructureMap of the onsite energy

shape
Polygon or FreeformShape object

system
Structural data like site positions and hoppings, see System for details

Shapes

The geometry of a finite-sized system can be defined using the Polygon class (2D only) or using
FreeformShape (1 to 3 dimensions). A few common shapes are included in the package and listed below.
These predefined shapes are just functions which configure and return a shape class object.

Building blocks

Polygon(vertices) Shape defined by a list of vertices in a 2D plane
FreeformShape(contains, width[, center]) Shape in 1 to 3 dimensions, defined by a function and a

bounding box
CompositeShape(shape1, shape2, op) A composition of 2 shapes using some operator (and, or,

xor...)

Polygon

class Polygon(vertices)
Shape defined by a list of vertices in a 2D plane

156 Chapter 13. API Reference

http://kwant-project.org/
http://kwant-project.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix

Pybinding User Guide, Release 0.9.4

Attributes

vertices (List[array_like]) Must be defined in clockwise or counterclockwise order.

Methods

contains(x: numpy.ndarray[float32[m, 1]], ...) Return True if the given position is located within
the shape

plot(**kwargs) Line plot of the polygon
with_offset(vector) Return a copy that’s offset by the given vector

contains(x: numpy.ndarray[float32[m, 1]], y: numpy.ndarray[float32[m, 1]], z:
numpy.ndarray[float32[m, 1]])

Return True if the given position is located within the shape

Given arrays as input the return type is a boolean array.

Parameters x, y, z : array_like

Positions to test against the shape.

plot(**kwargs)
Line plot of the polygon

Parameters **kwargs

Forwarded to matplotlib.pyplot.plot().

with_offset(vector)
Return a copy that’s offset by the given vector

FreeformShape

class FreeformShape(contains, width, center=(0, 0, 0))
Shape in 1 to 3 dimensions, defined by a function and a bounding box

Note that this class can describe 3D shapes, but the plot() method can currently only draw in 2D. Never-
theless, a Model will accept 3D shapes without a problem.

Parameters contains : callable

The function which selects if a point is contained within the shape.

width : array_like

Width up to 3 dimensions which specifies the size of the bounding box.

center : array_like

The position of the center of the bounding box.

Methods

contains(x: numpy.ndarray[float32[m, 1]], ...) Return True if the given position is located within
the shape

plot([resolution]) Plot a lightly shaded silhouette of the freeform shape
with_offset(vector) Return a copy that’s offset by the given vector

13.3. Shapes 157

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot

Pybinding User Guide, Release 0.9.4

contains(x: numpy.ndarray[float32[m, 1]], y: numpy.ndarray[float32[m, 1]], z:
numpy.ndarray[float32[m, 1]])

Return True if the given position is located within the shape

Given arrays as input the return type is a boolean array.

Parameters x, y, z : array_like

Positions to test against the shape.

plot(resolution=(1000, 1000), **kwargs)
Plot a lightly shaded silhouette of the freeform shape

This method only works for 2D shapes.

Parameters resolution : Tuple[int, int]

The (x, y) pixel resolution of the generated shape image.

**kwargs

Forwarded to matplotlib.pyplot.imshow().

with_offset(vector)
Return a copy that’s offset by the given vector

CompositeShape

class CompositeShape(shape1, shape2, op)
A composition of 2 shapes using some operator (and, or, xor...)

This shape is usually not created directly but present the result of applying logical or arithmetic operators
on other shapes.

Parameters shape1, shape2 : _cpp.Shape

The shapes which shall be composed.

op : Callable

A logical operator (and, or, xor...) to use for the composition.

Methods

contains(x: numpy.ndarray[float32[m, 1]], ...) Return True if the given position is located within
the shape

plot([resolution]) Plot a lightly shaded silhouette of the composite shape
with_offset(vector) Return a copy that’s offset by the given vector

contains(x: numpy.ndarray[float32[m, 1]], y: numpy.ndarray[float32[m, 1]], z:
numpy.ndarray[float32[m, 1]])

Return True if the given position is located within the shape

Given arrays as input the return type is a boolean array.

Parameters x, y, z : array_like

Positions to test against the shape.

plot(resolution=(1000, 1000), **kwargs)
Plot a lightly shaded silhouette of the composite shape

Parameters resolution : Tuple[int, int]

The (x, y) pixel resolution of the generated image.

158 Chapter 13. API Reference

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imshow

Pybinding User Guide, Release 0.9.4

**kwargs

Forwarded to matplotlib.pyplot.imshow().

with_offset(vector)
Return a copy that’s offset by the given vector

Predefined shapes

circle(radius[, center]) A circle in the xy plane
line(a, b) A line shape intended for 1D lattices or to specify leads

for 2D lattices
primitive([a1, a2, a3]) Follow the primitive lattice shape – just repeat the unit

cell a number of times
rectangle(x[, y]) A rectangle in the xy plane
regular_polygon(num_sides, radius[, angle]) A polygon shape where all sides have equal length

circle

circle(radius, center=(0, 0))
A circle in the xy plane

Parameters radius : float

center : array_like

Returns FreeformShape

line

line(a, b)
A line shape intended for 1D lattices or to specify leads for 2D lattices

Parameters a, b : Union[float, array_like]

Start and end points.

Returns Line

primitive

primitive(a1=1, a2=1, a3=1)
Follow the primitive lattice shape – just repeat the unit cell a number of times

Parameters a1, a2, a3 : int or float

Number of times to repeat the unit cell in the respective lattice vector directions.

Returns Primitive

rectangle

rectangle(x, y=None)
A rectangle in the xy plane

Parameters x : float

Width of the rectangle.

y : float, optional

13.3. Shapes 159

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imshow

Pybinding User Guide, Release 0.9.4

Height of the rectangle. If not given, assumed equal to x.

Returns Polygon

regular_polygon

regular_polygon(num_sides, radius, angle=0)
A polygon shape where all sides have equal length

Parameters num_sides : int

Number of sides.

radius : float

Radius of the circle which connects all the vertices of the polygon.

angle : float

Rotate the polygon.

Returns Polygon

Symmetry

translational_symmetry([a1, a2, a3]) Simple translational symmetry

translational_symmetry

translational_symmetry(a1=True, a2=True, a3=True)
Simple translational symmetry

Parameters a1, a2, a3 : bool or float

Control translation in the ‘a1, a2, a3’ lattice vector directions. Possible values:

• False -> No translational symmetry in this direction.

• True -> Translation length is automatically set to the unit cell length.

• float value -> Manually set the translation length in nanometers.

Modifiers

The following decorators are used to create functions which express some feature of a tight-binding model, such
as various fields, defects or geometric deformations.

Decorators

site_state_modifier([min_neighbors]) Modify the state (valid or invalid) of lattice sites, e.g. to
create vacancies

site_position_modifier() Modify the position of lattice sites, e.g. to apply geomet-
ric deformations

onsite_energy_modifier([is_double]) Modify the onsite energy, e.g. to apply an electric field
hopping_energy_modifier([is_double,
is_complex])

Modify the hopping energy, e.g. to apply a magnetic field

160 Chapter 13. API Reference

Pybinding User Guide, Release 0.9.4

site_state_modifier

site_state_modifier(min_neighbors=0)
Modify the state (valid or invalid) of lattice sites, e.g. to create vacancies

Parameters min_neighbors : int

After modification, remove dangling sites with less than this number of neighbors.

Notes

The function parameters must be a combination of any number of the following:

state [ndarray of bool] Indicates if a lattice site is valid. Invalid sites will be removed from the model after
all modifiers have been applied.

x, y, z [ndarray] Lattice site position.

sub_id [ndarray] Sublattice identifier: Can be checked for equality with sublattice names specified in
Lattice. For example, state[sub_id == 'A'] = False will invalidate only sites on sub-
lattice A.

sites [Sites] Helper object. Can be used instead of x, y, z, sub_id. See Sites.

The function must return:

ndarray A modified state argument or an ndarray of the same dtype and shape.

Examples

def vacancy(position, radius):
@pb.site_state_modifier
def f(state, x, y):

x0, y0 = position
state[(x-x0)**2 + (y-y0)**2 < radius**2] = False
return state

return f

model = pb.Model(
... # lattice, shape, etc.
vacancy(position=[0, 0], radius=0.1)

)

site_position_modifier

site_position_modifier()
Modify the position of lattice sites, e.g. to apply geometric deformations

Notes

The function parameters must be a combination of any number of the following:

x, y, z [ndarray] Lattice site position.

sub_id [ndarray of int] Sublattice identifier: can be checked for equality with sublattice names specified in
Lattice. For example, x[sub_id == 'A'] += 0.1 will only displace sites on sublattice A.

sites [Sites] Helper object. Can be used instead of x, y, z, sub_id. See Sites.

The function must return:

13.5. Modifiers 161

Pybinding User Guide, Release 0.9.4

tuple of ndarray Modified ‘x, y, z’ arguments or 3 ndarray objects of the same dtype and shape.

Examples

def triaxial_displacement(c):
@pb.site_position_modifier
def displacement(x, y, z):

ux = 2*c * x*y
uy = c * (x**2 - y**2)
return x + ux, y + uy, z

return displacement

model = pb.Model(
... # lattice, shape, etc.
triaxial_displacement(c=0.15)

)

onsite_energy_modifier

onsite_energy_modifier(is_double=False, **kwargs)
Modify the onsite energy, e.g. to apply an electric field

Parameters is_double : bool

Requires the model to use double precision floating point values. Defaults to single
precision otherwise.

Notes

The function parameters must be a combination of any number of the following:

energy [ndarray] The onsite energy.

x, y, z [ndarray] Lattice site position.

sub_id [ndarray of int] Sublattice identifier: can be checked for equality with sublattice names specified
in Lattice. For example, energy[sub_id == 'A'] = 0 will set the onsite energy only for
sublattice A sites.

sites [Sites] Helper object. Can be used instead of x, y, z, sub_id. See Sites.

The function must return:

ndarray A modified potential argument or an ndarray of the same dtype and shape.

Examples

def wavy(a, b):
@pb.onsite_energy_modifier
def f(x, y):

return np.sin(a * x)**2 + np.cos(b * y)**2
return f

model = pb.Model(
... # lattice, shape, etc.
wavy(a=0.6, b=0.9)

)

162 Chapter 13. API Reference

Pybinding User Guide, Release 0.9.4

hopping_energy_modifier

hopping_energy_modifier(is_double=False, is_complex=False, **kwargs)
Modify the hopping energy, e.g. to apply a magnetic field

Parameters is_double : bool

Requires the model to use double precision floating point values. Defaults to single
precision otherwise.

is_complex : bool

Requires the model to use complex numbers. Even if this is set to False, the
model will automatically switch to complex numbers if it finds that a modifier has
returned complex numbers for real input. Manually setting this argument to True
will speed up model build time slightly, but it’s not necessary for correct operation.

Notes

The function parameters must be a combination of any number of the following:

energy [ndarray] The hopping energy between two sites.

x1, y1, z1, x2, y2, z2 [ndarray] Positions of the two lattice sites connected by the hopping parameter.

hop_id [ndarray of int] Hopping identifier: can be checked for equality with hopping names specified in
Lattice. For example, energy[hop_id == 't_nn'] *= 1.1 will only modify the energy
of the hopping family named t_nn.

The function must return:

ndarray A modified hopping argument or an ndarray of the same dtype and shape.

Examples

def constant_magnetic_field(B):
@pb.hopping_energy_modifier
def f(energy, x1, y1, x2, y2):

y = 0.5 * (y1 + y2) * 1e-9
peierls = B * y * (x1 - x2) * 1e-9
return energy * np.exp(1j * 2*pi/phi0 * peierls)

return f

model = pb.Model(
... # lattice, shape, etc.
constant_magnetic_field(B=10)

)

Predefined modifiers

constant_potential(magnitude) Apply a constant onsite energy to every lattice site
force_double_precision() Forces the model to use double precision even if that’s

not require by any modifier
force_complex_numbers() Forces the model to use complex numbers even if that’s

not require by any modifier

13.5. Modifiers 163

Pybinding User Guide, Release 0.9.4

constant_potential

constant_potential(magnitude)
Apply a constant onsite energy to every lattice site

Parameters magnitude : float

In units of eV.

force_double_precision

force_double_precision()
Forces the model to use double precision even if that’s not require by any modifier

force_complex_numbers

force_complex_numbers()
Forces the model to use complex numbers even if that’s not require by any modifier

Experimental

hopping_generator(name, energy) Introduce a new hopping family (with a new hop_id)
via a list of index pairs

hopping_generator

hopping_generator(name, energy)
Introduce a new hopping family (with a new hop_id) via a list of index pairs

This can be used to create new hoppings independent of the main Lattice definition. It’s especially useful
for creating additional local hoppings, e.g. to model defects.

Parameters name : string

Friendly identifier for the new hopping family.

energy : Union[float, complex]

Base hopping energy value.

Notes

The function parameters must be a combination of any number of the following:

x, y, z [np.ndarray] Lattice site position.

sub_id [np.ndarray] Sublattice identifier: can be checked for equality with sublattice names specified in
Lattice.

The function must return:

Tuple[np.ndarray, np.ndarray] Arrays of index pairs which form the new hoppings.

Compute

After a Model is constructed, computational routines can be applied to determine various physical properties.
The following submodules contain functions for exact diagonalization as well as some approximative compute

164 Chapter 13. API Reference

Pybinding User Guide, Release 0.9.4

methods. Follow the links below for details.

solver Eigensolvers with a few extra computation methods
chebyshev Computations based on Chebyshev polynomial expan-

sion

solver

Eigensolvers with a few extra computation methods

The Solver class is the main interface for dealing with eigenvalue problems. It is made to work specifically with
pybinding’s Model objects, but it may use any eigensolver algorithm under the hood.

A few different algorithms are provided out of the box: the lapack(), arpack() and feast() functions
return concrete Solver implementation using the LAPACK, ARPACK and FEAST algorithms, respectively.

The Solver may easily be extended with new eigensolver algorithms. All that is required is a function which
takes a Hamiltonian matrix and returns the computed eigenvalues and eigenvectors. See _SolverPythonImpl
for example.

Classes

Solver(impl: _pybinding.Solver) Computes the eigenvalues and eigenvectors of a Hamil-
tonian matrix

Functions

arpack(model, k[, sigma]) ARPACK Solver implementation for sparse matrices
feast(model, energy_range, initial_size_guess) FEAST Solver implementation for sparse matrices
lapack(model, **kwargs) LAPACK Solver implementation for dense matrices

class Solver(impl: _pybinding.Solver)
Computes the eigenvalues and eigenvectors of a Hamiltonian matrix

This the common interface for various eigensolver implementations. It should not be created directly, but via
the specific functions: lapack(), arpack() and feast(). Those functions will set up their specific
solver strategy and return a properly configured Solver object.

calc_bands(k0, k1, *ks, step=0.1)
Calculate the band structure on a path in reciprocal space

Parameters k0, k1, *ks : array_like

Points in reciprocal space which form the path for the band calculation. At least
two points are required.

step : float, optional

Calculation step length in reciprocal space units. Lower step values will return
more detailed results.

Returns Bands

calc_dos(energies, broadening)
Calculate the density of states as a function of energy

DOS(𝐸) =
1

𝑐
√

2𝜋

∑︁
𝑛

𝑒−
(𝐸𝑛−𝐸)2

2𝑐2

for each 𝐸 in energies, where 𝑐 is broadening and 𝐸𝑛 is eigenvalues[n].

13.6. Compute 165

Pybinding User Guide, Release 0.9.4

Parameters energies : array_like

Values for which the DOS is calculated.

broadening : float

Controls the width of the Gaussian broadening applied to the DOS.

Returns Series

calc_eigenvalues(map_probability_at=None)
Return an Eigenvalues result object with an optional probability colormap

While the eigenvalues property returns the raw values array, this method returns a result object
with more data. In addition to the energy states, this result may show a colormap of the probability
density for each state at a single position.

Parameters map_probability_at : array_like, optional

Cartesian position where the probability density of each energy state should be
calculated.

Returns Eigenvalues

calc_ldos(energies, broadening, position, sublattice=’‘, reduce=True)
Calculate the local density of states as a function of energy at the given position

LDOS(𝐸) =
1

𝑐
√

2𝜋

∑︁
𝑛

|Ψ𝑛(𝑟)|2𝑒−
(𝐸𝑛−𝐸)2

2𝑐2

for each 𝐸 in energies, where 𝑐 is broadening, 𝐸𝑛 is eigenvalues[n] and 𝑟 is a single site
position determined by the arguments position and sublattice.

Parameters energies : array_like

Values for which the DOS is calculated.

broadening : float

Controls the width of the Gaussian broadening applied to the DOS.

position : array_like

Cartesian position of the lattice site for which the LDOS is calculated. Doesn’t
need to be exact: the method will find the actual site which is closest to the given
position.

sublattice : str

Only look for sites of a specific sublattice, closest to position. The default value
considers any sublattice.

reduce : bool

This option is only relevant for multi-orbital models. If true, the resulting LDOS
will summed over all the orbitals at the target site and the result will be a 1D array.
If false, the individual orbital results will be preserved and the result will be a 2D
array with shape == (energy.size, num_orbitals).

Returns Series

calc_probability(n, reduce=1e-05)
Calculate the spatial probability density

P(𝑟) = |Ψ𝑛(𝑟)|2

for each position 𝑟 in system.positions where Ψ𝑛(𝑟) is eigenvectors[:, n].

Parameters n : int or array_like

166 Chapter 13. API Reference

Pybinding User Guide, Release 0.9.4

Index of the desired eigenstate. If an array of indices is given, the probability will
be calculated at each one and a sum will be returned.

reduce : float, optional

Reduce degenerate states by summing their probabilities. Neighboring states are
considered degenerate if their energy is difference is lower than the value of
reduce. This is disabled by passing reduce=0.

Returns StructureMap

calc_spatial_ldos(energy, broadening)
Calculate the spatial local density of states at the given energy

LDOS(𝑟) =
1

𝑐
√

2𝜋

∑︁
𝑛

|Ψ𝑛(𝑟)|2𝑒−
(𝐸𝑛−𝐸)2

2𝑐2

for each position 𝑟 in system.positions, where 𝐸 is energy, 𝑐 is broadening, 𝐸𝑛 is
eigenvalues[n] and Ψ𝑛(𝑟) is eigenvectors[:, n].

Parameters energy : float

The energy value for which the spatial LDOS is calculated.

broadening : float

Controls the width of the Gaussian broadening applied to the DOS.

Returns StructureMap

clear()
Clear the computed results and start over

static find_degenerate_states(energies, abs_tolerance=1e-05)
Return groups of indices which belong to degenerate states

Parameters energies : array_like

abs_tolerance : float, optional

Examples

>>> energies = np.array([0.1, 0.1, 0.2, 0.5, 0.5, 0.5, 0.7, 0.8, 0.8])
>>> Solver.find_degenerate_states(energies)
[[0, 1], [3, 4, 5], [7, 8]]

>>> energies = np.array([0.1, 0.2, 0.5, 0.7])
>>> Solver.find_degenerate_states(energies)
[]

report(shortform=False)→ str
Return a report of the last solve() computation

Parameters shortform : bool, optional

Return a short one line version of the report

set_wave_vector(k)
Set the wave vector for periodic models

Parameters k : array_like

Wave vector in reciprocal space.

solve()
Explicitly solve the eigenvalue problem right now

13.6. Compute 167

Pybinding User Guide, Release 0.9.4

This method is usually not needed because the main result properties, eigenvalues and
eigenvectors, will call this implicitly the first time they are accessed. However, since the
solve() routine may be computationally expensive, it is useful to have the ability to call it ahead of
time as needed.

eigenvalues
1D array of computed energy states

eigenvectors
2D array where each column represents a wave function

eigenvectors.shape == (system.num_sites, eigenvalues.size)

model
The tight-binding model attached to this solver

system
The tight-binding system attached to this solver (shortcut for Solver.model.system)

arpack(model, k, sigma=0, **kwargs)
ARPACK Solver implementation for sparse matrices

This solver is intended for large models with sparse Hamiltonian matrices. It only computes a small tar-
geted subset of eigenvalues and eigenvectors. Internally this solver uses the scipy.sparse.linalg.
eigsh() function for sparse Hermitian matrices.

Parameters model : Model

Model which will provide the Hamiltonian matrix.

k : int

The desired number of eigenvalues and eigenvectors. This number must be smaller
than the size of the matrix, preferably much smaller for optimal performance. The
computed eigenvalues are the ones closest to sigma.

sigma : float, optional

Look for eigenvalues near sigma.

**kwargs

Advanced arguments: forwarded to scipy.sparse.linalg.eigsh().

Returns Solver

feast(model, energy_range, initial_size_guess, recycle_subspace=False, is_verbose=False)
FEAST Solver implementation for sparse matrices

This solver is only available if the C++ extension module was compiled with FEAST.

Parameters model : Model

Model which will provide the Hamiltonian matrix.

energy_range : tuple of float

The lowest and highest eigenvalue between which to compute the solutions.

initial_size_guess : int

Initial user guess for number of eigenvalues which will be found in the given
energy_range. This value may be completely wrong - the solver will auto-
correct as needed. However, for optimal performance the estimate should be as
close to 1.5 * actual_size as possible.

recycle_subspace : bool, optional

Reuse previously computed values as a starting point for the next computation. This
improves performance when subsequent computations differ only slightly, as is the

168 Chapter 13. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh

Pybinding User Guide, Release 0.9.4

case for the band structure of periodic systems where the results change gradually
as a function of the wave vector. It may hurt performance otherwise.

is_verbose : bool, optional

Show the raw output from the FEAST routine.

Returns Solver

lapack(model, **kwargs)
LAPACK Solver implementation for dense matrices

This solver is intended for small models which are best represented by dense matrices. Always solves for
all the eigenvalues and eigenvectors. Internally this solver uses the scipy.linalg.eigh() function
for dense Hermitian matrices.

Parameters model : Model

Model which will provide the Hamiltonian matrix.

**kwargs

Advanced arguments: forwarded to scipy.linalg.eigh().

Returns Solver

chebyshev

Computations based on Chebyshev polynomial expansion

The kernel polynomial method (KPM) can be used to approximate various functions by expanding them in a series
of Chebyshev polynomials.

Classes

KPM (impl) The common interface for various KPM implementations
SpatialLDOS(data, energy, structure) Holds the results of KPM.calc_spatial_ldos()

Functions

dirichlet_kernel() The Dirichlet kernel – returns raw moments, least favor-
able choice

jackson_kernel() The Jackson kernel – a good general-purpose kernel, ap-
propriate for most applications

kpm(model[, energy_range, kernel, ...]) The default CPU implementation of the Kernel Polyno-
mial Method

kpm_cuda(model[, energy_range, kernel]) Same as kpm() except that it’s executed on the GPU
using CUDA (if supported)

lorentz_kernel([lambda_value]) The Lorentz kernel – best for Green’s function

class KPM(impl)
The common interface for various KPM implementations

It should not be created directly but via specific functions like kpm() or kpm_cuda().

All implementations are based on: https://doi.org/10.1103/RevModPhys.78.275

calc_conductivity(chemical_potential, broadening, temperature, direction=’xx’, volume=1.0,
num_random=1, num_points=1000)

Calculate Kubo-Bastin electrical conductivity as a function of chemical potential

13.6. Compute 169

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html#scipy.linalg.eigh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html#scipy.linalg.eigh
https://doi.org/10.1103/RevModPhys.78.275

Pybinding User Guide, Release 0.9.4

The return value is in units of the conductance quantum (e^2 / hbar) not taking into account spin or
any other degeneracy.

The calculation is based on: https://doi.org/10.1103/PhysRevLett.114.116602.

Parameters chemical_potential : array_like

Values (in eV) for which the conductivity is calculated.

broadening : float

Width (in eV) of the smallest detail which can be resolved in the chemical potential.
Lower values result in longer calculation time.

temperature : float

Value of temperature for the Fermi-Dirac distribution.

direction : Optional[str]

Direction in which the conductivity is calculated. E.g., “xx”, “xy”, “zz”, etc.

volume : Optional[float]

The volume of the system.

num_random : int

The number of random vectors to use for the stochastic calculation of KPM mo-
ments. Larger numbers improve the quality of the result but also increase calcula-
tion time linearly. Fortunately, result quality also improves with system size, so the
DOS of very large systems can be calculated accurately with only a small number
of random vectors.

num_points : Optional[int]

Number of points for integration.

Returns Series

calc_dos(energy, broadening, num_random=1)
Calculate the density of states as a function of energy

Parameters energy : ndarray

Values for which the DOS is calculated.

broadening : float

Width, in energy, of the smallest detail which can be resolved. Lower values result
in longer calculation time.

num_random : int

The number of random vectors to use for the stochastic calculation of KPM mo-
ments. Larger numbers improve the quality of the result but also increase calcula-
tion time linearly. Fortunately, result quality also improves with system size, so the
DOS of very large systems can be calculated accurately with only a small number
of random vectors.

Returns Series

calc_greens(i, j, energy, broadening)
Calculate Green’s function of a single Hamiltonian element

Parameters i, j : int

Hamiltonian indices.

energy : ndarray

Energy value array.

170 Chapter 13. API Reference

https://doi.org/10.1103/PhysRevLett.114.116602

Pybinding User Guide, Release 0.9.4

broadening : float

Width, in energy, of the smallest detail which can be resolved. Lower values result
in longer calculation time.

Returns ndarray

Array of the same size as the input energy.

calc_ldos(energy, broadening, position, sublattice=’‘, reduce=True)
Calculate the local density of states as a function of energy

Parameters energy : ndarray

Values for which the LDOS is calculated.

broadening : float

Width, in energy, of the smallest detail which can be resolved. Lower values result
in longer calculation time.

position : array_like

Cartesian position of the lattice site for which the LDOS is calculated. Doesn’t
need to be exact: the method will find the actual site which is closest to the given
position.

sublattice : str

Only look for sites of a specific sublattice, closest to position. The default value
considers any sublattice.

reduce : bool

This option is only relevant for multi-orbital models. If true, the resulting LDOS
will summed over all the orbitals at the target site and the result will be a 1D array.
If false, the individual orbital results will be preserved and the result will be a 2D
array with shape == (energy.size, num_orbitals).

Returns Series

calc_spatial_ldos(energy, broadening, shape, sublattice=’‘)
Calculate the LDOS as a function of energy and space (in the area of the given shape)

Parameters energy : ndarray

Values for which the LDOS is calculated.

broadening : float

Width, in energy, of the smallest detail which can be resolved. Lower values result
in longer calculation time.

shape : Shape

Determines the site positions at which to do the calculation.

sublattice : str

Only look for sites of a specific sublattice, within the shape. The default value
considers any sublattice.

Returns SpatialLDOS

deferred_ldos(energy, broadening, position, sublattice=’‘)
Same as calc_ldos() but for parallel computation: see the parallel module

Parameters energy : ndarray

Values for which the LDOS is calculated.

broadening : float

13.6. Compute 171

Pybinding User Guide, Release 0.9.4

Width, in energy, of the smallest detail which can be resolved. Lower values result
in longer calculation time.

position : array_like

Cartesian position of the lattice site for which the LDOS is calculated. Doesn’t
need to be exact: the method will find the actual site which is closest to the given
position.

sublattice : str

Only look for sites of a specific sublattice, closest to position. The default value
considers any sublattice.

Returns Deferred

moments(num_moments, alpha, beta=None, op=None)
Calculate KPM moments in the form of expectation values

The result is an array of moments where each value is equal to:

𝜇𝑛 =< 𝛽|𝑜𝑝 · 𝑇𝑛(𝐻)|𝛼 >

Parameters num_moments : int

The number of moments to calculate.

alpha : array_like

The starting state vector of the KPM iteration.

beta : Optional[array_like]

If not given, defaults to 𝛽 = 𝛼.

op : Optional[csr_matrix]

Operator in the form of a sparse matrix. If omitted, an identity matrix is assumed:
𝜇𝑛 =< 𝛽|𝑇𝑛(𝐻)|𝛼 >.

Returns ndarray

report(shortform=False)
Return a report of the last computation

Parameters shortform : bool, optional

Return a short one line version of the report

kernel
The damping kernel

model
The tight-binding model holding the Hamiltonian

scaling_factors
A tuple of KPM scaling factors a and b

system
The tight-binding system (shortcut for KPM.model.system)

class SpatialLDOS(data, energy, structure)
Holds the results of KPM.calc_spatial_ldos()

It behaves like a product of a Series and a StructureMap.

ldos(position, sublattice=’‘)
Return the LDOS as a function of energy at a specific position

Parameters position : array_like

sublattice : Optional[str]

172 Chapter 13. API Reference

Pybinding User Guide, Release 0.9.4

Returns Series

structure_map(energy)
Return a StructureMap of the spatial LDOS at the given energy

Parameters energy : float

Produce a structure map for LDOS data closest to this energy value.

Returns StructureMap

kpm(model, energy_range=None, kernel=’default’, num_threads=’auto’, silent=False, **kwargs)
The default CPU implementation of the Kernel Polynomial Method

This implementation works on any system and is well optimized.

Parameters model : Model

Model which will provide the Hamiltonian matrix.

energy_range : Optional[Tuple[float, float]]

KPM needs to know the lowest and highest eigenvalue of the Hamiltonian, before
computing the expansion moments. By default, this is determined automatically
using a quick Lanczos procedure. To override the automatic boundaries pass a
(min_value, max_value) tuple here. The values can be overestimated, but
note that performance drops as the energy range becomes wider. On the other hand,
underestimating the range will produce NaN values in the results.

kernel : Kernel

The kernel in the Kernel Polynomial Method. Used to improve the quality
of the function reconstructed from the Chebyshev series. Possible values are
jackson_kernel() or lorentz_kernel(). The Jackson kernel is used by
default.

num_threads : int

The number of CPU threads to use for calculations. This is automatically set to the
number of logical cores available on the current machine.

silent : bool

Don’t show any progress messages.

Returns KPM

kpm_cuda(model, energy_range=None, kernel=’default’, **kwargs)
Same as kpm() except that it’s executed on the GPU using CUDA (if supported)

See kpm() for detailed parameter documentation. This method is only available if the C++ extension
module was compiled with CUDA.

Parameters model : Model

energy_range : Optional[Tuple[float, float]]

kernel : Kernel

Returns KPM

jackson_kernel()
The Jackson kernel – a good general-purpose kernel, appropriate for most applications

Imposes Gaussian broadening sigma = pi / N where N is the number of moments. The broadening
value is user-defined for each function calculation (LDOS, Green’s, etc.). The number of moments is then
determined based on the broadening – it’s not directly set by the user.

lorentz_kernel(lambda_value=4.0)
The Lorentz kernel – best for Green’s function

13.6. Compute 173

Pybinding User Guide, Release 0.9.4

This kernel is most appropriate for the expansion of the Green’s function because it most closely mimics the
divergences near the true eigenvalues of the Hamiltonian. The Lorentzian broadening is given by epsilon
= lambda / N where N is the number of moments.

Parameters lambda_value : float

May be used to fine-tune the smoothness of the convergence. Usual values are
between 3 and 5. Lower values will speed up the calculation at the cost of accuracy.
If in doubt, leave it at the default value of 4.

dirichlet_kernel()
The Dirichlet kernel – returns raw moments, least favorable choice

This kernel doesn’t modify the moments at all. The resulting moments represent just a truncated series
which results in lots of oscillation in the reconstructed function. Therefore, this kernel should almost never
be used. It’s only here in case the raw moment values are needed for some other purpose. Note that
required_num_moments() returns N = pi / sigma for compatibility with the Jackson kernel,
but there is no actual broadening associated with the Dirichlet kernel.

Experimental

parallel Multi-threaded functions for parameter sweeps

parallel

Multi-threaded functions for parameter sweeps

Functions

ndsweep(factory[, plot, labels, tags, silent]) Do a multi-threaded n-dimensional parameter sweep
parallel_for(factory[, make_result]) Multi-threaded loop feed by the factory function
parallelize([num_threads, queue_size]) A decorator which creates factory functions for

parallel_for()
sweep(factory[, plot, labels, tags, silent]) Do a multi-threaded parameter sweep

parallel_for(factory, make_result=None)
Multi-threaded loop feed by the factory function

Parameters factory : Factory

Factory function created with the parallelize() decorator.

make_result : callable, optional

Creates the final result from raw data. This result is also the final return value of
parallel_for().

Returns array_like

A result for each loop iteration.

Examples

@parallelize(x=np.linspace(0, 1, 10))
def factory(x):

pb.Model(...) # depends on `x`
greens = pb.greens.kpm(model)

174 Chapter 13. API Reference

Pybinding User Guide, Release 0.9.4

return greens.deferred_ldos(...) # may also depend on `x`

results = parallel_for(factory)

parallelize(num_threads=num_cores, queue_size=num_cores, **kwargs)
A decorator which creates factory functions for parallel_for()

The decorated function must return a Deferred compute kernel.

Parameters num_threads : int

Number of threads that will run in parallel. Defaults to the number of cores in the
current machine.

queue_size : int

Number of Deferred jobs to be queued up for consumption by the worker
threads. The maximum number of jobs that will be kept in memory at any one
time will be queue_size + num_threads.

**kwargs

Variables which will be iterated over in parallel_for() and passed to the dec-
orated function. See example.

Examples

@parallelize(a=np.linspace(0, 1, 10), b=np.linspace(-2, 2, 10))
def factory(a, b):

pb.Model(...) # depends on `a` and `b`
greens = pb.greens.kpm(model)
return greens.deferred_ldos(...) # may also depend on `a` and `b`

results = parallel_for(factory)

sweep(factory, plot=<function <lambda>>, labels=None, tags=None, silent=False)
Do a multi-threaded parameter sweep

Parameters factory : Factory

Factory function created with the parallelize() decorator.

plot : callable

Plotting functions which takes a Sweep result as its only argument.

labels, tags : dict

Forwarded to Sweep object.

silent : bool

Don’t print status messages.

Returns Sweep

ndsweep(factory, plot=None, labels=None, tags=None, silent=False)
Do a multi-threaded n-dimensional parameter sweep

Parameters factory : Factory

Factory function created with the parallelize() decorator.

plot : callable

Plotting functions which takes a NDSweep result as its only argument.

labels, tags : dict

13.6. Compute 175

Pybinding User Guide, Release 0.9.4

Forwarded to NDSweep object.

silent : bool

Don’t print status messages.

Returns NDSweep

Results

Result objects are usually produced by compute functions, but they are also used to express certain model prop-
erties. They hold data and offer postprocessing and plotting methods specifically adapted to the nature of the
physical properties (i.e. the stored data).

The utility functions pb.save() and pb.load() can be used to efficiently store entire result objects into files.
The information about the kind of physical property is saved along with the raw data, i.e. executing result =
pb.load("data_file.pbz") followed by result.plot() will work and present the appropriate figure.

save(obj, file) Save an object to a compressed file
load(file) Load an object from a compressed file
make_path(k0, k1, *ks[, step]) Create a path which connects the given k points
Bands(k_path, energy) Band structure along a path in k-space
Eigenvalues(eigenvalues[, probability]) Hamiltonian eigenvalues with optional probability map
Series(variable, data[, labels]) A series of data points determined by a common relation,

i.e.
SpatialMap(data, positions[, sublattices]) Represents some spatially dependent property: data

mapped to site positions
StructureMap(data, sites, hoppings[, boundaries]) A subclass of SpatialMap that also includes hoppings

between sites
Sweep(x, y, data[, labels, tags]) 2D parameter sweep with x and y 1D array parameters

and data 2D array result
NDSweep(variables, data[, labels, tags]) ND parameter sweep

save

save(obj, file)
Save an object to a compressed file

Essentially, this is just a wrapper for pickle.dump() with a few conveniences, like default pickle proto-
col 4 and gzip compression. The ‘.pbz’ extension will be added if file has none.

Parameters obj : Any

Object to be saved.

file : Union[str, pathlib.Path]

May be a str, a pathlib object or a file object created with open().

load

load(file)
Load an object from a compressed file

Wraps pickle.load() with the same conveniences as pb.save().

Parameters file : Union[str, pathlib.Path]

May be a str, a pathlib object or a file object created with open().

176 Chapter 13. API Reference

https://docs.python.org/3/library/pickle.html#pickle.dump
https://docs.python.org/3/library/pickle.html#pickle.load

Pybinding User Guide, Release 0.9.4

make_path

make_path(k0, k1, *ks, step=0.1)
Create a path which connects the given k points

Parameters k0, k1, *ks

Points in k-space to connect.

step : float

Length in k-space between two samples. Smaller step -> finer detail.

Examples

>>> np.allclose(make_path(0, 3, -1, step=1).T, [0, 1, 2, 3, 2, 1, 0, -1])
True
>>> np.allclose(make_path([0, 0], [2, 3], [-1, 4], step=1.4),
... [[0, 0], [1, 1.5], [2, 3], [0.5, 3.5], [-1, 4]])
True

Bands

class Bands(k_path, energy)
Band structure along a path in k-space

Attributes

k_path (Path) The path in reciprocal space along which the bands were calculated. E.g. constructed
using make_path().

en-
ergy

(array_like) Energy values for the bands along the path in k-space.

Methods

plot([point_labels]) Line plot of the band structure
plot_kpath([point_labels]) Quiver plot of the k-path along which the bands were

computed

plot(point_labels=None, **kwargs)
Line plot of the band structure

Parameters point_labels : List[str]

Labels for the k_points.

**kwargs

Forwarded to plt.plot().

plot_kpath(point_labels=None, **kwargs)
Quiver plot of the k-path along which the bands were computed

Combine with Lattice.plot_brillouin_zone() to see the path in context.

Parameters point_labels : List[str]

Labels for the k-points.

13.7. Results 177

Pybinding User Guide, Release 0.9.4

**kwargs

Forwarded to quiver().

Eigenvalues

class Eigenvalues(eigenvalues, probability=None)
Hamiltonian eigenvalues with optional probability map

Attributes

values (np.ndarray)
probability (np.ndarray)

Methods

plot([mark_degenerate, show_indices]) Standard eigenvalues scatter plot
plot_heatmap([size, mark_degenerate, ...]) Eigenvalues scatter plot with a heatmap indicating

probability density

plot(mark_degenerate=True, show_indices=False, **kwargs)
Standard eigenvalues scatter plot

Parameters mark_degenerate : bool

Plot a line which connects degenerate states.

show_indices : bool

Plot index number next to all states.

**kwargs

Forwarded to plt.scatter().

plot_heatmap(size=(7, 77), mark_degenerate=True, show_indices=False, **kwargs)
Eigenvalues scatter plot with a heatmap indicating probability density

Parameters size : Tuple[int, int]

Min and max scatter dot size.

mark_degenerate : bool

Plot a line which connects degenerate states.

show_indices : bool

Plot index number next to all states.

**kwargs

Forwarded to plt.scatter().

Series

class Series(variable, data, labels=None)
A series of data points determined by a common relation, i.e. 𝑦 = 𝑓(𝑥)

178 Chapter 13. API Reference

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.quiver

Pybinding User Guide, Release 0.9.4

Attributes

vari-
able

(array_like) Independent variable for which the data was computed.

data (array_like) An array of values which were computed as a function of variable. It can be 1D
or 2D. In the latter case each column represents the result of a different function applied to the
same variable input.

la-
bels

(dict) Plot labels: ‘variable’, ‘data’, ‘title’ and ‘columns’.

Methods

plot(**kwargs) Labeled line plot
reduced() Return a copy where the data is summed over the

columns
with_data(data) Return a copy of this result object with different data

plot(**kwargs)
Labeled line plot

Parameters **kwargs

Forwarded to plt.plot().

reduced()
Return a copy where the data is summed over the columns

Only applies to results which may have multiple columns of data, e.g. results for multiple orbitals for
LDOS calculation.

with_data(data)
Return a copy of this result object with different data

SpatialMap

class SpatialMap(data, positions, sublattices=None)
Represents some spatially dependent property: data mapped to site positions

Attributes

data 1D array of values for each site, i.e. maps directly to
x, y, z site coordinates

num_sites Total number of lattice sites
positions Lattice site positions.
sub 1D array of sublattices IDs, short for .

sublattices
sublattices 1D array of sublattices IDs
x 1D array of coordinates, short for .positions.x
xyz Return a new array with shape=(N, 3).
y 1D array of coordinates, short for .positions.y
z 1D array of coordinates, short for .positions.z

Methods

13.7. Results 179

Pybinding User Guide, Release 0.9.4

__getitem__(idx) Same rules as numpy indexing
clipped(v_min, v_max) Clip (limit) the values in the data array, see clip()
cropped(**limits) Return a copy which retains only the sites within the

given limits
plot_contour(**kwargs) Contour plot of the xy plane
plot_contourf([num_levels]) Filled contour plot of the xy plane
plot_pcolor(**kwargs) Color plot of the xy plane
with_data((data) -> pybind-
ing.results.SpatialMap)

Return a copy of this object with different data
mapped to the sites

__getitem__(idx)
Same rules as numpy indexing

clipped(v_min, v_max)
Clip (limit) the values in the data array, see clip()

cropped(**limits)
Return a copy which retains only the sites within the given limits

Parameters **limits

Attribute names and corresponding limits. See example.

Examples

Leave only the data where -10 <= x < 10 and 2 <= y < 4:

new = original.cropped(x=[-10, 10], y=[2, 4])

plot_contour(**kwargs)
Contour plot of the xy plane

Parameters **kwargs

Forwarded to tricontour().

plot_contourf(num_levels=50, **kwargs)
Filled contour plot of the xy plane

Parameters num_levels : int

Number of contour levels.

**kwargs

Forwarded to tricontourf().

plot_pcolor(**kwargs)
Color plot of the xy plane

Parameters **kwargs

Forwarded to tripcolor().

with_data(data)→ pybinding.results.SpatialMap
Return a copy of this object with different data mapped to the sites

data
1D array of values for each site, i.e. maps directly to x, y, z site coordinates

num_sites
Total number of lattice sites

positions
Lattice site positions. Named tuple with x, y, z fields, each a 1D array.

180 Chapter 13. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html#numpy.clip
https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html#numpy.clip
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.tricontour
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.tricontourf
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.tripcolor

Pybinding User Guide, Release 0.9.4

sub
1D array of sublattices IDs, short for .sublattices

sublattices
1D array of sublattices IDs

x
1D array of coordinates, short for .positions.x

xyz
Return a new array with shape=(N, 3). Convenient, but slow for big systems.

y
1D array of coordinates, short for .positions.y

z
1D array of coordinates, short for .positions.z

StructureMap

class StructureMap(data, sites, hoppings, boundaries=())
A subclass of SpatialMap that also includes hoppings between sites

Attributes

boundaries Boundary hoppings between different translation
units (only for infinite systems)

data 1D array of values for each site, i.e. maps directly to
x, y, z site coordinates

hoppings Sparse matrix of hopping IDs
num_sites Total number of lattice sites
positions Lattice site positions.
spatial_map Just the SpatialMap subset without hoppings
sub 1D array of sublattices IDs, short for .

sublattices
sublattices 1D array of sublattices IDs
x 1D array of coordinates, short for .positions.x
xyz Return a new array with shape=(N, 3).
y 1D array of coordinates, short for .positions.y
z 1D array of coordinates, short for .positions.z

Methods

__getitem__(idx) Same rules as numpy indexing
clipped(v_min, v_max) Clip (limit) the values in the data array, see clip()
cropped(**limits) Return a copy which retains only the sites within the

given limits
plot([cmap, site_radius, num_periods]) Plot the spatial structure with a colormap of data at

the lattice sites
plot_contour(**kwargs) Contour plot of the xy plane
plot_contourf([num_levels]) Filled contour plot of the xy plane
plot_pcolor(**kwargs) Color plot of the xy plane
with_data(...) Return a copy of this object with different data

mapped to the sites

13.7. Results 181

https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html#numpy.clip

Pybinding User Guide, Release 0.9.4

__getitem__(idx)
Same rules as numpy indexing

clipped(v_min, v_max)
Clip (limit) the values in the data array, see clip()

cropped(**limits)
Return a copy which retains only the sites within the given limits

Parameters **limits

Attribute names and corresponding limits. See example.

Examples

Leave only the data where -10 <= x < 10 and 2 <= y < 4:

new = original.cropped(x=[-10, 10], y=[2, 4])

plot(cmap=’YlGnBu’, site_radius=(0.03, 0.05), num_periods=1, **kwargs)
Plot the spatial structure with a colormap of data at the lattice sites

Both the site size and color are used to display the data.

Parameters cmap : str

Matplotlib colormap to be used for the data.

site_radius : Tuple[float, float]

Min and max radius of lattice sites. This range will be used to visually represent
the magnitude of the data.

num_periods : int

Number of times to repeat periodic boundaries.

**kwargs

Additional plot arguments as specified in structure_plot_properties().

plot_contour(**kwargs)
Contour plot of the xy plane

Parameters **kwargs

Forwarded to tricontour().

plot_contourf(num_levels=50, **kwargs)
Filled contour plot of the xy plane

Parameters num_levels : int

Number of contour levels.

**kwargs

Forwarded to tricontourf().

plot_pcolor(**kwargs)
Color plot of the xy plane

Parameters **kwargs

Forwarded to tripcolor().

with_data(data)→ pybinding.results.StructureMap
Return a copy of this object with different data mapped to the sites

182 Chapter 13. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html#numpy.clip
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.tricontour
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.tricontourf
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.tripcolor

Pybinding User Guide, Release 0.9.4

boundaries
Boundary hoppings between different translation units (only for infinite systems)

data
1D array of values for each site, i.e. maps directly to x, y, z site coordinates

hoppings
Sparse matrix of hopping IDs

num_sites
Total number of lattice sites

positions
Lattice site positions. Named tuple with x, y, z fields, each a 1D array.

spatial_map
Just the SpatialMap subset without hoppings

sub
1D array of sublattices IDs, short for .sublattices

sublattices
1D array of sublattices IDs

x
1D array of coordinates, short for .positions.x

xyz
Return a new array with shape=(N, 3). Convenient, but slow for big systems.

y
1D array of coordinates, short for .positions.y

z
1D array of coordinates, short for .positions.z

Sweep

class Sweep(x, y, data, labels=None, tags=None)
2D parameter sweep with x and y 1D array parameters and data 2D array result

Attributes

x (array_like) 1D array with x-axis values – usually the primary parameter being swept.
y (array_like) 1D array with y-axis values – usually the secondary parameter.
data (array_like) 2D array with shape == (x.size, y.size) containing the main result

data.
la-
bels

(dict) Plot labels: ‘title’, ‘x’, ‘y’ and ‘data’.

tags (dict) Any additional user defined variables.

Methods

__getitem__(item) Same rules as numpy indexing
colorbar(**kwargs) Draw a colorbar with the label of Sweep.data
cropped([x, y]) Return a copy with data cropped to the limits in the x

and/or y axes
interpolated([mul, size, kind]) Return a copy with interpolate data using scipy.

interpolate.interp1d
Continued on next page

13.7. Results 183

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

Pybinding User Guide, Release 0.9.4

Table 13.30 – continued from previous page
mirrored([axis]) Return a copy with data mirrored in around specified

axis
plot(**kwargs) Plot a 2D colormap of Sweep.data
save_txt(filename) Save text file with 3 columns: x, y, data.

__getitem__(item)
Same rules as numpy indexing

colorbar(**kwargs)
Draw a colorbar with the label of Sweep.data

cropped(x=None, y=None)
Return a copy with data cropped to the limits in the x and/or y axes

A call with x=[-1, 2] will leave data only where -1 <= x <= 2.

Parameters x, y : Tuple[float, float]

Min and max data limit.

Returns Sweep

interpolated(mul=None, size=None, kind=’linear’)
Return a copy with interpolate data using scipy.interpolate.interp1d

Call with mul=2 to double the size of the x-axis and interpolate data to match. To interpolate in both
axes pass a tuple, e.g. mul=(4, 2).

Parameters mul : Union[int, Tuple[int, int]]

Number of times the size of the axes should be multiplied.

size : Union[int, Tuple[int, int]]

New size of the axes. Zero will leave size unchanged.

kind

Forwarded to scipy.interpolate.interp1d.

Returns Sweep

mirrored(axis=’x’)
Return a copy with data mirrored in around specified axis

Only makes sense if the axis starts at 0.

Parameters axis : ‘x’ or ‘y’

Returns Sweep

plot(**kwargs)
Plot a 2D colormap of Sweep.data

Parameters **kwargs

Forwarded to matplotlib.pyplot.pcolormesh().

save_txt(filename)
Save text file with 3 columns: x, y, data.

Parameters filename : str

NDSweep

class NDSweep(variables, data, labels=None, tags=None)
ND parameter sweep

184 Chapter 13. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.pcolormesh

Pybinding User Guide, Release 0.9.4

Attributes

variables (tuple of array_like) The parameters being swept.
data (np.ndarray) Main result array with shape == [len(v) for v in variables].
labels (dict) Plot labels: ‘title’, ‘x’, ‘y’ and ‘data’.
tags (dict) Any additional user defined variables.

Components

The following submodules contain classes and functions which are not meant to created manually, but they are
components of other classes (e.g. Model) so they are used regularly (even if indirectly).

system Structural information and utilities
leads Lead interface for scattering models

system

Structural information and utilities

Classes

Sites(positions[, ids]) Reference implementation of AbstractSites
System(impl: _pybinding.System) Structural data of a tight-binding model

Functions

plot_hoppings(positions, hoppings[, width, ...]) Plot lines between lattice sites at positions based on
the hoppings matrix

plot_periodic_boundaries(positions, ...[, ...]) Plot the periodic boundaries of a system
plot_sites(positions, data[, radius, ...]) Plot circles at lattice site positions with colors based

on data
structure_plot_properties([axes, site, ...]) Process structure plot properties

class Sites(positions, ids=None)
Reference implementation of AbstractSites

argsort_nearest(target_position, target_site_family=None)
Return an ndarray of site indices, sorted by distance from the target

Parameters target_position : array_like

target_site_family : int

Look for a specific sublattice site. By default any will do.

Returns np.ndarray

Examples

>>> sites = Sites(([0, 1, 1.1], [0, 0, 0], [0, 0, 0]), [0, 1, 0])
>>> np.all(sites.argsort_nearest([1, 0, 0]) == [1, 2, 0])
True

13.8. Components 185

Pybinding User Guide, Release 0.9.4

>>> np.all(sites.argsort_nearest([1, 0, 0], target_site_family=0) == [2, 0,
→˓ 1])
True

distances(target_position)
Return the distances of all sites from the target position

Parameters target_position : array_like

Examples

>>> sites = Sites(([0, 1, 1.1], [0, 0, 0], [0, 0, 0]), [0, 1, 0])
>>> np.allclose(sites.distances([1, 0, 0]), [1, 0, 0.1])
True

find_nearest(target_position, target_site_family=’‘)
Return the index of the position nearest the target

Parameters target_position : array_like

target_site_family : Optional[str]

Look for a specific sublattice site. By default any will do.

Returns int

Examples

>>> sites = Sites(([0, 1, 1.1], [0, 0, 0], [0, 0, 0]), [0, 1, 0])
>>> sites.find_nearest([1, 0, 0])
1
>>> sites.find_nearest([1, 0, 0], target_site_family=0)
2

positions
Named tuple of x, y, z positions

size
Total number of sites

xyz
Return a new array with shape=(N, 3). Convenient, but slow for big systems.

class System(impl: _pybinding.System)
Structural data of a tight-binding model

Stores positions, sublattice and hopping IDs for all lattice sites.

__getitem__(idx)
Same rules as numpy indexing

cropped(**limits)
Return a copy which retains only the sites within the given limits

Parameters **limits

Attribute names and corresponding limits. See example.

Examples

Leave only the data where -10 <= x < 10 and 2 <= y < 4:

186 Chapter 13. API Reference

Pybinding User Guide, Release 0.9.4

new = original.cropped(x=[-10, 10], y=[2, 4])

find_nearest(position, sublattice=’‘)
Find the index of the atom closest to the given position

Parameters position : array_like

Where to look.

sublattice : Optional[str]

Look for a specific sublattice site. By default any will do.

Returns int

plot(num_periods=1, **kwargs)
Plot the structure: sites, hoppings and periodic boundaries (if any)

Parameters num_periods : int

Number of times to repeat the periodic boundaries.

**kwargs

Additional plot arguments as specified in structure_plot_properties().

reduce_orbitals(data)
Sum up the contributions of individual orbitals in the given data

Takes a 1D array of hamiltonian_size and returns a 1D array of num_sites size where the
multiple orbital data has been reduced per site.

Parameters data : array_like

Must be 1D and the equal to the size of the Hamiltonian matrix

Returns array_like

to_hamiltonian_indices(system_idx)
Translate the given system index into its corresponding Hamiltonian indices

System indices are always scalars and index a single (x, y, z) site position. For single-orbital models
there is a 1:1 correspondence between system and Hamiltonian indices. However, for multi-orbital
models the Hamiltonian indices are 1D arrays with a size corresponding to the number of orbitals on
the target site.

Parameters system_idx : int

Returns array_like

with_data(data)→ pybinding.results.StructureMap
Map some data to this system

boundaries
Boundary hoppings between different translation units (only for infinite systems)

expanded_positions
positions expanded to hamiltonian_size by replicating for each orbital

hamiltonian_size
The size of the Hamiltonian matrix constructed from this system

Takes into account the number of orbitals/spins at each lattice site which makes
hamiltonian_size >= num_sites.

hoppings
Sparse matrix of hopping IDs

lattice
Lattice specification

13.8. Components 187

Pybinding User Guide, Release 0.9.4

num_sites
Total number of lattice sites

positions
Lattice site positions. Named tuple with x, y, z fields, each a 1D array.

sub
1D array of sublattices IDs, short for .sublattices

sublattices
1D array of sublattices IDs

x
1D array of coordinates, short for .positions.x

xyz
Return a new array with shape=(N, 3). Convenient, but slow for big systems.

y
1D array of coordinates, short for .positions.y

z
1D array of coordinates, short for .positions.z

plot_hoppings(positions, hoppings, width=1.0, offset=(0, 0, 0), blend=1.0, color=’#666666’,
axes=’xyz’, boundary=(), draw_only=(), **kwargs)

Plot lines between lattice sites at positions based on the hoppings matrix

Parameters positions : Tuple[array_like, array_like, array_like]

Site coordinates in the form of an (x, y, z) tuple of 1D arrays.

hoppings : coo_matrix

Sparse matrix with the hopping data, usually System.hoppings. The row and
col indices of the sparse matrix are used to draw lines between lattice sites, while
data determines the color.

width : float

Width of the hopping plot lines.

offset : Tuple[float, float, float]

Offset all positions by a constant value.

blend : float

Blend all colors to white (fake alpha blending): expected values between 0 and 1.

axes : str

The spatial axes to plot. E.g. ‘xy’, ‘yz’, etc.

color : str

Set the same color for all hopping lines. To assign a different color for each hopping
ID, use the cmap parameter.

boundary : Tuple[int, array_like]

If given, apply the boundary (sign, shift).

draw_only : Iterable[str]

Only draw lines for the hoppings named in this list.

**kwargs

Forwarded to matplotlib.collections.LineCollection.

Returns matplotlib.collections.LineCollection

188 Chapter 13. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix
http://matplotlib.org/api/collections_api.html#matplotlib.collections.LineCollection
http://matplotlib.org/api/collections_api.html#matplotlib.collections.LineCollection

Pybinding User Guide, Release 0.9.4

plot_periodic_boundaries(positions, hoppings, boundaries, data, num_periods=1, **kwargs)
Plot the periodic boundaries of a system

Parameters positions : Tuple[array_like, array_like, array_like]

Site coordinates in the form of an (x, y, z) tuple of 1D arrays.

hoppings : coo_matrix

Sparse matrix with the hopping data, usually System.hoppings(). The row
and col indices of the sparse matrix are used to draw lines between lattice sites,
while data determines the color.

boundaries : List[Boundary]

Periodic boundaries of a System.

data : array_like

Color data at each site. Should be a 1D array of the same size as positions.

num_periods : int

Number of times to repeat the periodic boundaries.

**kwargs

Additional plot arguments as specified in structure_plot_properties().

plot_sites(positions, data, radius=0.025, offset=(0, 0, 0), blend=1.0, cmap=’auto’, axes=’xyz’,
**kwargs)

Plot circles at lattice site positions with colors based on data

Parameters positions : Tuple[array_like, array_like, array_like]

Site coordinates in the form of an (x, y, z) tuple of 1D arrays.

data : array_like

Color data at each site. Should be a 1D array of the same size as positions. If
the data is discrete with few unique values, the discrete colors parameter should
be used. For continuous data, setting a cmap (colormap) is preferred.

radius : Union[float, array_like]

Radius (in data units) of the plotted circles representing lattice sites. Should be a
scalar value or an array with the same size as positions.

offset : Tuple[float, float, float]

Offset all positions by a constant value.

blend : float

Blend all colors to white (fake alpha blending): expected values between 0 and 1.

cmap : Union[str, List[str]]

Either a regular matplotlib colormap or a list of discrete colors to apply to the drawn
circles. In the latter case, it is assumed that data is discrete with only a few unique
values. For example, sublattice data for graphene will only contain two unique
values for the A and B sublattices which will be assigned the first two colors from
the cmap list. For continuous data, a regular matplotlib colormap should be used
instead.

axes : str

The spatial axes to plot. E.g. ‘xy’, ‘yz’, etc.

**kwargs

Forwarded to matplotlib.collections.CircleCollection.

13.8. Components 189

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix
http://matplotlib.org/api/collections_api.html#matplotlib.collections.CircleCollection

Pybinding User Guide, Release 0.9.4

Returns matplotlib.collections.CircleCollection

structure_plot_properties(axes=’xyz’, site=None, hopping=None, boundary=None,
**kwargs)

Process structure plot properties

Parameters axes : str

The spatial axes to plot. E.g. ‘xy’ for the default view, or ‘yz’, ‘xz’ and similar to
plot a rotated view.

site : dict

Arguments forwarded to plot_sites().

hopping : dict

Arguments forwarded to plot_hoppings().

boundary : dict

Arguments forwarded to plot_periodic_boundaries().

**kwargs

Additional args are reserved for internal implementation.

Returns dict

leads

Lead interface for scattering models

The only way to create leads is using the Model.attach_lead() method. The classes represented here are
the final product of that process, listed in Model.leads.

class Lead(impl: _pybinding.Lead, index)
Describes a single lead connected to a Model

Leads can only be created using Model.attach_lead() and accessed using Model.leads.

calc_bands(start=-3.141592653589793, end=3.141592653589793, step=0.05)
Calculate the band structure of an infinite lead

Parameters start, end : float

Points in reciprocal space which form the path for the band calculation.

step : float

Calculation step length in reciprocal space units. Lower step values will return
more detailed results.

Returns Bands

plot(lead_length=6, **kwargs)
Plot the sites, hoppings and periodic boundaries of the lead

Parameters lead_length : int

Number of times to repeat the lead’s periodic boundaries.

**kwargs

Additional plot arguments as specified in structure_plot_properties().

plot_bands(start=-3.141592653589793, end=3.141592653589793, step=0.05, **kwargs)
Plot the band structure of an infinite lead

Parameters start, end : float

Points in reciprocal space which form the path for the band calculation.

190 Chapter 13. API Reference

http://matplotlib.org/api/collections_api.html#matplotlib.collections.CircleCollection

Pybinding User Guide, Release 0.9.4

step : float

Calculation step length in reciprocal space units. Lower step values will return
more detailed results.

**kwargs

Forwarded to Bands.plot().

plot_contact(line_width=1.6, arrow_length=0.5, shade_width=0.3, shade_color=’#d40a0c’)
Plot the shape and direction of the lead contact region

Parameters line_width : float

Width of the line representing the lead contact.

arrow_length : float

Size of the direction arrow as a fraction of the contact line length.

shade_width : float

Width of the shaded area as a fraction of the arrow length.

shade_color : str

Color of the shaded area.

h0
Unit cell Hamiltonian as csr_matrix

h1
Hamiltonian which connects who unit cells, csr_matrix

indices
Main system indices (1d array) to which this lead is connected

system
Structural information, see System

Miscellaneous

constants A few useful physical constants
pltutils Collection of utility functions for matplotlib

constants

A few useful physical constants

Note that energy is expressed in units of eV.

c = 299792458
[m/s] speed of light

e = 1.602e-19
[C] electron charge

epsilon0 = 8.854e-12
[F/m] vacuum permittivity

hbar = 6.582118989999999e-16
[eV*s] reduced Plank constant

pauli = x: [[0, 1], [1, 0]], y: [[0, -1j], [1j, 0]], z: [[1, 0], [0, -1]]
Pauli matrices – use the .x, .y and .z attributes

13.9. Miscellaneous 191

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix

Pybinding User Guide, Release 0.9.4

phi0 = 4.1356673328075734e-15
[V*s] magnetic quantum

pltutils

Collection of utility functions for matplotlib

Functions

cm2inch(*values) Convert from centimeter to inch
colorbar([mappable, cax, ax, label, powerlimits]) Custom colorbar with modified style and optional label
despine([trim]) Remove the top and right spines
despine_all() Remove all spines, axes labels and ticks
get_palette([name, num_colors, start]) Get a color palette from matplotlib’s colormap database
legend(*args[, reverse, facecolor, lw]) Custom legend with modified style and option to reverse

label order
respine() Redraw all spines, opposite of despine()
set_palette([name, num_colors, start]) Set the active color palette
use_style([style]) Shortcut for matplotlib.style.use() with py-

binding style applied by default

cm2inch(*values)
Convert from centimeter to inch

Parameters *values

Returns tuple

Examples

>>> cm2inch(2.54, 5.08)
(1.0, 2.0)

colorbar(mappable=None, cax=None, ax=None, label=’‘, powerlimits=(0, 0), **kwargs)
Custom colorbar with modified style and optional label

Changes default pad and aspect argument values and turns on rasterization for a nicer looking colorbar
with smaller size in vector formats (pdf, svg).

Parameters label : str

Color data label.

powerlimits : Tuple[int, int]

Sets size thresholds for scientific notation.

mappable, cax, ax, **kwargs

Forwarded to matplotlib.pyplot.colorbar().

despine(trim=False)
Remove the top and right spines

Parameters trim : bool

Trim spines so that they don’t extend beyond the last major ticks.

despine_all()
Remove all spines, axes labels and ticks

192 Chapter 13. API Reference

http://matplotlib.org/api/style_api.html#matplotlib.style.use
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.colorbar

Pybinding User Guide, Release 0.9.4

get_palette(name=None, num_colors=8, start=0)
Get a color palette from matplotlib’s colormap database

Parameters name : str, optional

Name of the palette to get. If None, get the active palette.

num_colors : int

Number of colors to retrieve.

start : int

Staring from this color number.

Returns List[color]

legend(*args, reverse=False, facecolor=‘0.98’, lw=0, **kwargs)
Custom legend with modified style and option to reverse label order

Parameters reverse : bool

Reverse the label order.

facecolor : color

Legend background color.

lw : float

Frame width.

*args, **kwargs

Forwarded to matplotlib.pyplot.legend().

respine()
Redraw all spines, opposite of despine()

set_palette(name=None, num_colors=8, start=0)
Set the active color palette

Parameters name : str, optional

Name of the palette. If None, modify the active palette.

num_colors : int

Number of colors to retrieve.

start : int

Staring from this color number.

use_style(style=pb_style)
Shortcut for matplotlib.style.use() with pybinding style applied by default

Parameters style : dict

A matplotlib style specification.

13.9. Miscellaneous 193

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend
http://matplotlib.org/api/style_api.html#matplotlib.style.use

Pybinding User Guide, Release 0.9.4

194 Chapter 13. API Reference

CHAPTER 14

Experimental

This section documents some of the experimental features of pybinding. They may be incomplete or require
additional work like compiling the code manually. Proceed with caution.

CUDA-based KPM

CUDA enables the execution of general purpose code on Nvidia GPUs. It can be used to accelerate computational
algorithms which feature natural parallelism. Pybinding features experimental support for CUDA. It’s used for
kernel polynomial method (KPM) calculations – see tutorial page and API reference.

The CUDA-base KPM implementation is available via the kpm_cuda() function. It mirrors the API of the
regular CPU-based kpm(). The only difference between them is where the calculation will take place. Note that
the CUDA implementation is still experimental and that only diagonal Green’s function elements will be computed
on the GPU, while off-diagonal falls back to regular CPU code. This will be addressed in a future version.

By default, CUDA support is disabled. You will need to turn it on manually by recompiling the package. First,
ensure that you have CUDA Toolkit 7.5 or newer installed. Next, remove any existing pybinding installation by
executing the following command in terminal:

pip3 uninstall pybinding

Finally, reinstall it with CUDA turned on:

PB_CUDA=ON pip3 install pybinding --no-binary pybinding

Note that pybinding is written twice. This is not a mistake. The --no-binary pybinding flag tells pip
to compile from source. Since this is all experimental: expect errors and no support.

FEAST eigensolver

The FEAST eigensolver significantly differs from traditional solvers like the ones found in LAPACK and
ARPACK. It takes its inspiration from the density-matrix representation and contour integration in quantum me-
chanics. When solving a series of eigenvalue problems which are close to one another, as is the case for band
structure calculations, the results of the previous calculation can be used as the starting point for the next. The al-
gorithm also features natural parallelism where different eigenvalues can be computed separately without overlap.

195

https://developer.nvidia.com/about-cuda
https://developer.nvidia.com/cuda-toolkit
http://www.ecs.umass.edu/~polizzi/feast/

Pybinding User Guide, Release 0.9.4

Pybinding has experimental support for this solver. It can be accessed via solver.feast(). However, it is
disabled by default and you will need to recompile the package in order to install it. Since FEAST requires Intel
PARDISO, you will need to have Intel MKL installed before you continue. Next, remove any existing pybinding
installation by executing the following command in terminal:

pip3 uninstall pybinding

Finally, reinstall it with MKL turned on:

PB_MKL=ON pip3 install pybinding --no-binary pybinding

Note that pybinding is written twice. This is not a mistake. The --no-binary pybinding flag tells pip
to compile from source. Since this is all experimental: expect errors and no support.

Hopping generator

The @hopping_generator can be used to create new hoppings independent of the main lattice definition.
It’s especially useful for creating additional local hoppings, e.g. to model defects. Here, we present a way create
twisted bilayer graphene with an arbitrary rotation angle 𝜃.

We start with two unconnected layers of graphene. A @site_position_modifier is applied to ro-
tate just one layer. Then, a @hopping_generator finds and connects the layers via site pairs which
satisfy the given criteria. The newly created hoppings all have identical energy at first. Finally, a
@hopping_energy_modifier to applied to set the new interlayer hopping energy to the desired distance-
dependent value.

This is an experimental feature, presented as is, without any additional support.

Source code

"""Construct a circular flake of twisted bilayer graphene (arbitrary angle)"""
import math
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import cKDTree

import pybinding as pb

c0 = 0.335 # [nm] graphene interlayer spacing

def two_graphene_monolayers():
"""Two individual layers of monolayer graphene without any interlayer hopping""

→˓"
from pybinding.repository.graphene.constants import a_cc, a, t

lat = pb.Lattice(a1=[a/2, a/2 * math.sqrt(3)], a2=[-a/2, a/2 * math.sqrt(3)])
lat.add_sublattices(('A1', [0, -a_cc, 0]),

('B1', [0, 0, 0]),
('A2', [0, 0, -c0]),
('B2', [0, a_cc, -c0]))

lat.register_hopping_energies({'gamma0': t})
lat.add_hoppings(

layer 1
([0, 0], 'A1', 'B1', 'gamma0'),
([0, -1], 'A1', 'B1', 'gamma0'),
([-1, 0], 'A1', 'B1', 'gamma0'),
layer 2
([0, 0], 'A2', 'B2', 'gamma0'),
([0, -1], 'A2', 'B2', 'gamma0'),
([-1, 0], 'A2', 'B2', 'gamma0'),

196 Chapter 14. Experimental

https://software.intel.com/en-us/intel-mkl

Pybinding User Guide, Release 0.9.4

not interlayer hopping
)
lat.min_neighbors = 2
return lat

def twist_layers(theta):
"""Rotate one layer and then a generate hopping between the rotated layers"""
theta = theta / 180 * math.pi # from degrees to radians

@pb.site_position_modifier
def rotate(x, y, z):

"""Rotate layer 2 by the given angle `theta`"""
layer2 = (z < 0)
x0 = x[layer2]
y0 = y[layer2]
x[layer2] = x0 * math.cos(theta) - y0 * math.sin(theta)
y[layer2] = y0 * math.cos(theta) + x0 * math.sin(theta)
return x, y, z

@pb.hopping_generator('interlayer', energy=0.1) # eV
def interlayer_generator(x, y, z):

"""Generate hoppings for site pairs which have distance `d_min < d < d_max`
→˓"""

positions = np.stack([x, y, z], axis=1)
layer1 = (z == 0)
layer2 = (z != 0)

d_min = c0 * 0.98
d_max = c0 * 1.1
kdtree1 = cKDTree(positions[layer1])
kdtree2 = cKDTree(positions[layer2])
coo = kdtree1.sparse_distance_matrix(kdtree2, d_max, output_type='coo_

→˓matrix')

idx = coo.data > d_min
abs_idx1 = np.flatnonzero(layer1)
abs_idx2 = np.flatnonzero(layer2)
row, col = abs_idx1[coo.row[idx]], abs_idx2[coo.col[idx]]
return row, col # lists of site indices to connect

@pb.hopping_energy_modifier
def interlayer_hopping_value(energy, x1, y1, z1, x2, y2, z2, hop_id):

"""Set the value of the newly generated hoppings as a function of distance"
→˓""

d = np.sqrt((x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2)
interlayer = (hop_id == 'interlayer')
energy[interlayer] = 0.4 * c0 / d[interlayer]
return energy

return rotate, interlayer_generator, interlayer_hopping_value

model = pb.Model(
two_graphene_monolayers(),
pb.circle(radius=1.5),
twist_layers(theta=21.798)

)
plt.figure(figsize=(6.5, 6.5))
model.plot(hopping=dict(width=1.6, cmap='auto'))
plt.title(r"θ = 21.798 \degree")
plt.show()

14.3. Hopping generator 197

Pybinding User Guide, Release 0.9.4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y
(n

m
)

 = 21.798 °

model = pb.Model(
two_graphene_monolayers(),
pb.circle(radius=1.5),
twist_layers(theta=12.95)

)
plt.figure(figsize=(6.5, 6.5))
model.plot(hopping=dict(width=1.6, cmap='auto'))
plt.title(r"θ = 12.95 \degree")
plt.show()

198 Chapter 14. Experimental

Pybinding User Guide, Release 0.9.4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (nm)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y
(n

m
)

 = 12.95 °

• genindex

14.3. Hopping generator 199

Pybinding User Guide, Release 0.9.4

200 Chapter 14. Experimental

Index

Symbols
__getitem__() (SpatialMap method), 180
__getitem__() (StructureMap method), 182
__getitem__() (Sweep method), 184
__getitem__() (System method), 186

A
a (in module pybinding.repository.graphene.constants),

143
a_cc (in module pybind-

ing.repository.graphene.constants), 143
add() (Model method), 155
add_aliases() (Lattice method), 150
add_hoppings() (Lattice method), 150
add_one_alias() (Lattice method), 151
add_one_hopping() (Lattice method), 151
add_one_sublattice() (Lattice method), 151
add_sublattices() (Lattice method), 151
argsort_nearest() (Sites method), 185
arpack() (in module pybinding.solver), 168
attach_lead() (Model method), 155

B
Bands (class in pybinding), 177
beta (in module pybind-

ing.repository.graphene.constants), 143
bilayer() (in module pybinding.repository.graphene),

142
boundaries (StructureMap attribute), 182
boundaries (System attribute), 187
brillouin_zone() (Lattice method), 152

C
c (in module pybinding.constants), 191
calc_bands() (Lead method), 190
calc_bands() (Solver method), 165
calc_conductivity() (KPM method), 169
calc_dos() (KPM method), 170
calc_dos() (Solver method), 165
calc_eigenvalues() (Solver method), 166
calc_greens() (KPM method), 170
calc_ldos() (KPM method), 171
calc_ldos() (Solver method), 166

calc_probability() (Solver method), 166
calc_spatial_ldos() (KPM method), 171
calc_spatial_ldos() (Solver method), 167
circle() (in module pybinding), 159
clear() (Solver method), 167
clipped() (SpatialMap method), 180
clipped() (StructureMap method), 182
cm2inch() (in module pybinding.pltutils), 192
colorbar() (in module pybinding.pltutils), 192
colorbar() (Sweep method), 184
CompositeShape (class in pybinding), 158
constant_magnetic_field() (in module pybind-

ing.repository.graphene.modifiers), 144
constant_potential() (in module pybinding), 164
contains() (CompositeShape method), 158
contains() (FreeformShape method), 158
contains() (Polygon method), 157
coulomb_potential() (in module pybind-

ing.repository.graphene.modifiers), 144
cropped() (SpatialMap method), 180
cropped() (StructureMap method), 182
cropped() (Sweep method), 184
cropped() (System method), 186

D
data (SpatialMap attribute), 180
data (StructureMap attribute), 183
deferred_ldos() (KPM method), 171
despine() (in module pybinding.pltutils), 192
despine_all() (in module pybinding.pltutils), 192
dirichlet_kernel() (in module pybinding.chebyshev),

174
distances() (Sites method), 186

E
e (in module pybinding.constants), 191
Eigenvalues (class in pybinding), 178
eigenvalues (Solver attribute), 168
eigenvectors (Solver attribute), 168
epsilon0 (in module pybinding.constants), 191
eval() (Model method), 155
expanded_positions (System attribute), 187

201

Pybinding User Guide, Release 0.9.4

F
feast() (in module pybinding.solver), 168
find_degenerate_states() (Solver static method), 167
find_nearest() (Sites method), 186
find_nearest() (System method), 187
force_complex_numbers() (in module pybinding), 164
force_double_precision() (in module pybinding), 164
FreeformShape (class in pybinding), 157

G
gaussian_bump() (in module pybind-

ing.repository.graphene.modifiers), 144
get_palette() (in module pybinding.pltutils), 192

H
h0 (Lead attribute), 191
h1 (Lead attribute), 191
hamiltonian (Model attribute), 156
hamiltonian_size (System attribute), 187
hbar (in module pybinding.constants), 191
hexagon_ac() (in module pybind-

ing.repository.graphene.shape), 143
hopping_energy_modifier() (in module pybinding), 163
hopping_generator() (in module pybinding), 164
hoppings (Lattice attribute), 153
hoppings (StructureMap attribute), 183
hoppings (System attribute), 187

I
indices (Lead attribute), 191
interpolated() (Sweep method), 184

J
jackson_kernel() (in module pybinding.chebyshev),

173

K
kernel (KPM attribute), 172
KPM (class in pybinding.chebyshev), 169
kpm() (in module pybinding.chebyshev), 173
kpm_cuda() (in module pybinding.chebyshev), 173

L
lapack() (in module pybinding.solver), 169
Lattice (class in pybinding), 149
lattice (Model attribute), 156
lattice (System attribute), 187
ldos() (SpatialLDOS method), 172
Lead (class in pybinding.leads), 190
leads (Model attribute), 156
legend() (in module pybinding.pltutils), 193
line() (in module pybinding), 159
load() (in module pybinding), 176
lorentz_kernel() (in module pybinding.chebyshev), 173

M
make_path() (in module pybinding), 177

mass_term() (in module pybind-
ing.repository.graphene.modifiers), 143

min_neighbors (Lattice attribute), 153
mirrored() (Sweep method), 184
Model (class in pybinding), 154
model (KPM attribute), 172
model (Solver attribute), 168
modifiers (Model attribute), 156
moments() (KPM method), 172
monolayer() (in module pybind-

ing.repository.graphene), 139
monolayer_3band() (in module pybind-

ing.repository.group6_tmd), 145
monolayer_4atom() (in module pybind-

ing.repository.graphene), 141
monolayer_4band() (in module pybind-

ing.repository.phosphorene), 144

N
ndim (Lattice attribute), 154
NDSweep (class in pybinding), 184
ndsweep() (in module pybinding.parallel), 175
nhop (Lattice attribute), 154
nsub (Lattice attribute), 154
num_sites (SpatialMap attribute), 180
num_sites (StructureMap attribute), 183
num_sites (System attribute), 187

O
offset (Lattice attribute), 154
onsite_energy_modifier() (in module pybinding), 162
onsite_map (Model attribute), 156

P
parallel_for() (in module pybinding.parallel), 174
parallelize() (in module pybinding.parallel), 175
pauli (in module pybinding.constants), 191
phi0 (in module pybinding.constants), 191
plot() (Bands method), 177
plot() (CompositeShape method), 158
plot() (Eigenvalues method), 178
plot() (FreeformShape method), 158
plot() (Lattice method), 152
plot() (Lead method), 190
plot() (Model method), 155
plot() (Polygon method), 157
plot() (Series method), 179
plot() (StructureMap method), 182
plot() (Sweep method), 184
plot() (System method), 187
plot_bands() (Lead method), 190
plot_brillouin_zone() (Lattice method), 152
plot_contact() (Lead method), 191
plot_contour() (SpatialMap method), 180
plot_contour() (StructureMap method), 182
plot_contourf() (SpatialMap method), 180
plot_contourf() (StructureMap method), 182
plot_heatmap() (Eigenvalues method), 178

202 Index

Pybinding User Guide, Release 0.9.4

plot_hoppings() (in module pybinding.system), 188
plot_kpath() (Bands method), 177
plot_pcolor() (SpatialMap method), 180
plot_pcolor() (StructureMap method), 182
plot_periodic_boundaries() (in module pybind-

ing.system), 188
plot_sites() (in module pybinding.system), 189
plot_vectors() (Lattice method), 153
Polygon (class in pybinding), 156
positions (Sites attribute), 186
positions (SpatialMap attribute), 180
positions (StructureMap attribute), 183
positions (System attribute), 188
primitive() (in module pybinding), 159
pybinding.chebyshev (module), 169
pybinding.constants (module), 191
pybinding.leads (module), 190
pybinding.parallel (module), 174
pybinding.pltutils (module), 192
pybinding.repository.graphene (module), 139
pybinding.repository.graphene.constants (module), 143
pybinding.repository.graphene.modifiers (module), 143
pybinding.repository.graphene.shape (module), 143
pybinding.repository.group6_tmd (module), 145
pybinding.repository.phosphorene (module), 144
pybinding.solver (module), 165
pybinding.system (module), 185

R
reciprocal_vectors() (Lattice method), 153
rectangle() (in module pybinding), 159
reduce_orbitals() (System method), 187
reduced() (Series method), 179
register_hopping_energies() (Lattice method), 153
regular_polygon() (in module pybinding), 160
report() (KPM method), 172
report() (Model method), 155
report() (Solver method), 167
respine() (in module pybinding.pltutils), 193

S
save() (in module pybinding), 176
save_txt() (Sweep method), 184
scaling_factors (KPM attribute), 172
Series (class in pybinding), 178
set_palette() (in module pybinding.pltutils), 193
set_wave_vector() (Model method), 155
set_wave_vector() (Solver method), 167
shape (Model attribute), 156
site_position_modifier() (in module pybinding), 161
site_radius_for_plot() (Lattice method), 153
site_state_modifier() (in module pybinding), 161
Sites (class in pybinding.system), 185
size (Sites attribute), 186
solve() (Solver method), 167
Solver (class in pybinding.solver), 165
spatial_map (StructureMap attribute), 183
SpatialLDOS (class in pybinding.chebyshev), 172

SpatialMap (class in pybinding), 179
structure_map() (Model method), 156
structure_map() (SpatialLDOS method), 173
structure_plot_properties() (in module pybind-

ing.system), 190
StructureMap (class in pybinding), 181
sub (SpatialMap attribute), 180
sub (StructureMap attribute), 183
sub (System attribute), 188
sublattices (Lattice attribute), 154
sublattices (SpatialMap attribute), 181
sublattices (StructureMap attribute), 183
sublattices (System attribute), 188
Sweep (class in pybinding), 183
sweep() (in module pybinding.parallel), 175
System (class in pybinding.system), 186
system (KPM attribute), 172
system (Lead attribute), 191
system (Model attribute), 156
system (Solver attribute), 168

T
t (in module pybinding.repository.graphene.constants),

143
t_nn (in module pybind-

ing.repository.graphene.constants), 143
to_hamiltonian_indices() (System method), 187
tokwant() (Model method), 156
translational_symmetry() (in module pybinding), 160
triaxial_strain() (in module pybind-

ing.repository.graphene.modifiers), 144

U
use_style() (in module pybinding.pltutils), 193

V
vectors (Lattice attribute), 154
vf (in module pybind-

ing.repository.graphene.constants), 143

W
with_data() (Series method), 179
with_data() (SpatialMap method), 180
with_data() (StructureMap method), 182
with_data() (System method), 187
with_min_neighbors() (Lattice method), 153
with_offset() (CompositeShape method), 159
with_offset() (FreeformShape method), 158
with_offset() (Lattice method), 153
with_offset() (Polygon method), 157

X
x (SpatialMap attribute), 181
x (StructureMap attribute), 183
x (System attribute), 188
xyz (Sites attribute), 186
xyz (SpatialMap attribute), 181

Index 203

Pybinding User Guide, Release 0.9.4

xyz (StructureMap attribute), 183
xyz (System attribute), 188

Y
y (SpatialMap attribute), 181
y (StructureMap attribute), 183
y (System attribute), 188

Z
z (SpatialMap attribute), 181
z (StructureMap attribute), 183
z (System attribute), 188

204 Index

	Background
	Workflow
	Citing
	BSD License
	Benchmarks
	System construction

	Changelog
	v0.9.4 | 2017-07-13
	v0.9.3 | 2017-05-29
	v0.9.2 | 2017-05-26
	v0.9.1 | 2017-04-28
	v0.9.0 | 2017-04-14
	v0.8.2 | 2017-01-26
	v0.8.1 | 2016-11-11
	v0.8.0 | 2016-07-01
	v0.7.2 | 2016-03-14
	v0.7.1 | 2016-02-08
	v0.7.0 | 2016-02-01

	Installation
	Quick Install
	Advanced Install

	Tutorial
	Imports
	Lattice
	Band structure
	Finite size
	Shape and symmetry
	Fields and effects
	Defects and strain
	Eigenvalue solvers
	Kernel polynomial method
	Scattering model

	Additional Topics
	Lattice specification
	Composite shapes
	Multi-orbital models
	Kwant compatibility

	Plotting Guide
	Model structure
	Structure-mapped data

	Random Examples
	Lattice specification and bands
	Finite size
	Nanoribbons

	Material Repository
	Graphene
	Phosphorene
	Group 6 TMDs

	API Reference
	Lattice
	Model
	Shapes
	Symmetry
	Modifiers
	Compute
	Results
	Components
	Miscellaneous

	Experimental
	CUDA-based KPM
	FEAST eigensolver
	Hopping generator

